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Preface

Relativistic atomic structure theory has been widely used for many years
for predicting atomic energy levels, transition rates, collision cross sections
and many other properties. The results have been important for fundamental
physics experiments as well as providing data for space science, controlled
fusion, and industrial applications. The development of a relativistic theory
of the electronic structure and properties of molecules and condensed matter
is more recent because it is technically more complex and needs more elabo-
rate mathematical machinery than nonrelativistic theory. The first attempts
in the early 1980s at relativistic molecular electronic structure calculations
based on Dirac’s Hamiltonian were unsuccessful and were mostly abandoned
in favour of semi-relativistic approximations for the bulk of applications to
quantum chemistry. Now that the dust has settled, there is a need for a book
on rigorous foundations that sets out workable and economical methods of
fully relativistic calculations for atoms, molecules and clusters that can be
used by both physicists and chemists.

Part I of the book, which is nonspecialist, aims to equip the reader to rec-
ognize the qualitative signature of relativistic effects in the electronic structure
of atoms and molecules. Part IT deals with the theoretical foundations of the
field. The form of relativistic wave equations is determined by the geometry of
Minkowski space-time and the structure of the Lorentz and Poincaré groups.
Quantum electrodynamics describes the physics of the interaction of electrona
and electromagnetic fields; the equations are too complicated to solve exactly,
but we can write down systematic approximation schemes that have proved
very effective for modelling electronic structure.

This provides the foundation for practical applications to atomic and
molecular physics in Part III of the book. The electrostatic potential near
each atomic nucleus is almost spherical, so that the nonrelativistic electron
wavefunction has a characteristic central field character in that region, permit-
ting factorization into radial and angular parts. Relativistic effects on electron
dynamics are most marked in the strong electric field near the nucleus; the
consequential coupling of the four components of Dirac central field spinors in
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that region therefore characterizes relativistic atomic wavefunctions. The long-
range electron-electron interaction propagates relativistic effects right across
the atom or molecule, so that it is essential to treat the whole many-electron
system relativistically in order to get reliable results.

The coupled radial components of Dirac atomic spinors can be approxi-
mated numerically with finite differences, finite elements, or by expansion in
analytic functions. Only the last approach is viable for polyatomic systems.
Just as nonrelativistic molecular wavefunctions are often approximated as lin-
ear combinations of Gaussian functions (GTF), so relativistic molecular wave-
functions can be constructed from G-spinors — four-component generalizations
of GTF having relativistic central field character. These incorporate all the
internal relations between the components to satisfy the boundary conditions
at the nuclei. Nonrelativistic GTF and G-spinors both represent the electron
distribution between atoms and the resultant molecular bonding in much the
same way. The failures of the 1980s were due to the incorrect assumption that
the four components of a Dirac spinor can be considered independent and
that variational calculations made with this assumption would reproduce the
internal structure of orbital spinors with sufficient accuracy. Successful four
component calculations need a spinor basis set.

The body of the book presents the technology needed for practical calcula-
tions; the appendices contain supplementary material. Chapters 6 to 8 set out
the mathematical machinery of relativistic electronic structure calculations
on atoms and ions, illustrated with output from a version of the GRASP
computer package. Chapter 9, centred on the DARC relativistic R-matrix
package, discusses mainly electron-atom/ion scattering, photo-excitation, and
photo-ionization. The construction and application of the relativistic molecu-
lar structure code BERTHA are described in Chapters 10 and 11. Appendix
A lists frequently used mathematical formulae, whilst Appendix B presents
mathematical background material on linear operators in Hilbert space, Lie
groups and Lie algebras, angular momentum theory (including diagram tech-
niques), and various aspects of numerical approximation including the theory
of variational methods for Dirac operators and iterative solution of (MC)DHF
equations.

The book is primarily intended as a resource for research physicists and
chemists, experimental or theoretical, who recognize that using the available
relativistic electronic structure packages as “black boxes” is not always wise.
These readers need to understand the physical and theoretical background in
order to appreciate what can be done with existing codes and. what is just
as important, what cannot be done. I have tried to include enough detail so
that this book can be used by graduate students starting work in the field as
well as by experts. Some material, especially Chapter 1, should be accessible
to undergraduates. More difficult sections marked with an asterisk (x), can
be skipped on a first reading.

When the late Charles Coulson first suggested that I write a book on rel-
ativistic atomic structure theory more than 30 years ago, I had no inkling
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how much the subject would develop nor how long the writing would take.
I regret I have not been able to find more space for some important topics
such as relativistic many-body theory and the calculation of radiative cor-
rections. The relativistic atomic structure package GRASP owes its present
form to many collaborators: in particular Nicholas Pyper, Steven Rose, Neil
Beatham, Bruce McKenzie, Jiro Hata, Ken Dyall, Patrick Norrington, and
Farid Parpia. Charlotte Froese Fischer who, with Farid Parpia and others,
has developed GRASP92 for modern multi-processor computers in order to
study complex electronic structures in heavy atoms, continues to introduce
further innovations, and her influence can be seen on both Chapters 7 and 8.
I am also grateful to Stephan Fritzsche, whose RATIP procedures take rela-
tivistic atomic calculations in a new direction, and to illuminating correspon-
dence with Steven Manson on photoionization theory and RRPA methods.
The DARC code for relativistic R-matrix calculations, Chapter 9, much of
which is based on GRASP, was mainly developed by Patrick Norrington and
Wasantha Wijesundera. The BERTHA relativistic molecular structure code,
Chapters 10 and 11, involved a close collaboration with Harry Quiney and
Haakon Skaane. Harry Quiney’s Oxford D. Phil. thesis laid the foundations
of the relativistic basis set method in 1987 which were implemented in the
DHF atomic code that preceded BERTHA. This book reflects the innumer-
able discussions on all aspects of relativistic atomic and molecular theory that
we have had over the past 20 years. I am most grateful for his careful reading
of much of the draft, which has resulted in many improvements. All errors
and omissions are, of course, my responsibility alone.

Oxford, Ian Grant
August 2006



Contents

Part I Relativity in atomic and molecular physics

1 Relativity in atomic and molecular physics ................
1.1 Elementary ideas . ... ... ..ot
1.2 The one-electron atom ........... .. .. ... ...

1.3

14

1.5

1.2.1
1.2.2
1.2.3
1.24
1.2.5

1.2.6
1.2.7

Classical Kepler orbits ......... .. ... .. . ... ...
The Bohr atom ........ .. .. . .. .. . ... ..
X-ray spectra and Moseley’s Law . ...................
Transition to quantum mechanics....................
Sommerfeld’s relativistic orbits and Dirac’s wave

equation . ... ...
Dirac and Schrédinger charge distributions ...........
The Dirac hydrogenic spectrum at high 2 ............

Many-electron atoms. .. ......... .. .. i

1.3.1
1.3.2
1.3.3
1.3.4

1.3.5
1.3.6

Central field models of the atom ....................
Closed and open shells ....... ... ... ... ... ... ...
Mean field potentials ................... ... .. ......
Comparison of Hartree-Fock and Dirac-Hartree-Fock

models for ground states .............. .. .. ... ... ..
The mechanism of shell filling . ......................
Other approaches .......... ... .. .. ... .. ... ... ...

Applications to atomic physics ...............iiiii. ..

1.4.1
1.4.2
1.4.3

XTay SPECETA « v v v ettt et e e e
Applications to astrophysics and plasma physics.......
Modelling atomic processes in plasmas ...............

Relativistic molecular structure .......... ... ... ... .......

1.5.1
1.5.2

1.5.3

Relativistic interpretations of chemical anomalies . . . ...
Relativistic effective core potentials and other

approxXimations . ..............iiiiiiiiii .
Dirac four-component methods for molecules..........



XII Contents

1.5.4 Parity violation and hyperfine interactions............ 52

1.5.5 High-precision spectroscopy of small molecules
containing light elements ........... ... ... ... ... .. 54
References . ..... ... ... 54

Part II Foundations

2 Relativistic wave equations for free particles............... 63
2.1 The special theory of relativity ........... ... .. ... ... ... 63
2.2 The Lorentz group. ... ..o, 66

2.2.1 % Spinor representation of Lorentz transformations. .. .. 67
2.2.2  xInfinitesimal Lorentz transformations and their
GENETAtOTS . . ..ot 69
2.2.3 x Representations of the Lorentz group ............... 70
2.3 The Poincaré group....... ..., 73
2.3.1 *Representations of the Poincaré group .............. 75
2.3.2  xSpace and time reflections. .......... ... ... ... ... 7
2.4 The Klein-Gordon equation . .......... ... ... ... 81
2.5 The Dirac equation ... 86
2.5.1 ~-Matrices and covariant form of Dirac’s equation .. ... 87
2.5.2 xLagrangian formulation of Dirac’s equation.......... 88
2.5.3 Foldy canonical form and the Foldy-Wouthuysen
transformation . ........ ... .. L 90
2.5.4 xPosition operators in Dirac theory ................. 92
2.5.5 Dirac particles in electromagnetic fields .............. 94
2.5.6 *Negative energy states............... ... .. .. ... ... 95
2.6 Maxwell’s equations ......... .. .. .. . i 96
2.6.1 Covariant form of Maxwell’s equations ............... 96
2.6.2 *Lagrangian formulation ........................... 99
2.6.3 Gauge invariance ...............ooiiiiiiiiiiiian.. 100
2.6.4 xMotion of a test charge ............. ... ... ..., 102
2.7 x Symmetries and local conservation laws . .................. 103
2.8 * Global conservation laws . ........ ... ... . i 107
2.9 #Green’s functions ......... ... .. i i 108
2.9.1 Nonrelativistic Green’s functions .................... 109
2.9.2 Klein-Gordon operator . ........... ..., 112
2.9.3 Maxwell’s equations: the zero-mass case .............. 116
2.9.4 Free-particle Dirac equation ................ .. ... ... 118

References . ... e 119



Contents XIII

3 The Dirac Equation ............ .. .. ... .. .. .. ... ... 121
3.1 Freeparticles ........ . 121
3.1.1 Properties of Dirac matrices ........................ 122
3.1.2 Covariance properties . ............c.ooiuieiiaen. . 123
3.1.3 Bilinear covariants.......... ... ... ... o o 125
3.1.4 Plane wave solutions ... ......... ... i 126
3.1.5 Energy and spin projectors ......................... 128
3.1.6 Charge conjugation ........... ... ... .. .. .. 130
3.2 Spherical symmetry . ....... .. . 132
3.2.1 Angular structure ......... ... ... i 133
3.2.2 Theoperator o, ..........c. i 134
3.2.3 Theoperator co P ....oovviiiii i 136
3.2.4 Separation of radial and spin-angular parts ........... 136
3.2.5 Angular density distributions ............... ... .. .. 137
3.2.6 Radial solutions for the free particle ................. 141
3.2.7 Partial wave normalization .............. .. .. .. .. .. 142
3.3 Hydrogenic atoms ........... . .. .. 143
3.3.1 Solution of the radial equations ..................... 146
3.3.2 The bound state solutions .......................... 148
3.3.3 Charge distributions and energy levels in hydrogenic
AtOIMS . .. oo e 149
3.3.4 % The continuum solutions ......................... 150
3.4 Scattering by a centre of force............ ... ... ... .. 152
3.4.1 Nonrelativistic potential scattering .................. 152
3.4.2  * Relativistic Coulomb scattering ................... 155
3.4.3 * Polarization effects in Coulomb scattering .......... 158
3.4.4 Historical note .......... ... ... .. . . 160
3.5 * Relativistic quantum defect theory ............. ... ... ... 161
3.6 Green’s functions . ........... .. ... 166
3.6.1 x Partial wave Green’s functions .................... 167
3.6.2 The partial wave Green’s function for the free Dirac
particle . ... .. 169
3.6.3 Summation over partial waves in the free electron case . 170
3.6.4 = Green’s function for hydrogenic ions ............... 171
3.7 The nonrelativistic limit: the Pauli approximation ........... 173
3.7.1 The Pauli approximation ........................... 173
3.7.2  The Foldy-Wouthuysen and related transformations ...175
3.8 Other aspects of Dirac theory ......... ... .. .. .. ... ... 178
References. ... ... . 178
4 Quantum electrodynamics .............. ... .. .. ... ... 181
4.1 Second quantization ........... .. .. .. . i i 181
4.1.1 Quantization of the Schrédinger equation............. 181

4.1.2 Identical particles: the symmetric case ............... 184



X1V Contents

4.2

4.3
4.4

4.5
4.6

4.7
4.8

4.9

4.10

4.11

4.12

4.13

4.14
4.15

4.1.3 Identical particles: the antisymmetric case ............ 188
Quantization of the electron-positron field .................. 189
4.2.1 The Furry picture ........ .. .. i 189
4.2.2 The free electron case . ........ ... 192
Quantization of the Maxwell field............ ... ... ... ... 196
Interaction of photons and electrons ....................... 200
4.4.1 The equations of motion ........................... 200
4.4.2 The Furry picture ...... .. .. ... i 202
4.4.3 The interaction picture............. .. ... .. .. .. ... 203
Wick’s theorems. . ... i 206
Propagators ......... ... 208
4.6.1 Photon propagators. ........... ... ... 208
4.6.2 Electron-positron propagators....................... 209
4.6.3 Feynman diagrams ............ .. .. ... ... 210
4.6.4 Second order interaction: U®) (t,t0) . .............. ... 212
4.6.5 Feynmanrules ........ .. ... i 216
The S-matrix .. ..ot 217
Bound states. ..... ... 218
4.8.1 A perturbation expansion ................... ... ... 218
4.8.2 Gell-Mann, Low, Sucher energy shift ................. 219
Effective interactions. ......... ... .. i i 222
4.9.1 One-photon exchange: Feynman gauge ............... 222
4.9.2  One-photon exchange: Coulomb gauge ............... 225
4.9.3 * Off-shell potentials: heuristic argument............. 227
4.9.4 One-photon exchange: the first order energy shift ...... 227
x Off-shell potentials........ ... ... .. .. . . 228
Many-body perturbation theory ............. .. .. .. .. ... 232
4.11.1 Nonrelativistic many-body theory ................... 233
MBPT for atoms and molecules ........................... 236
4.12.1 Particle-hole formalism............. .. ... .. .. ... 236
4.12.2 Computational methods............. ... ... ... .... 238
Relativistic approaches to atomic and molecular structure . ...238
4.13.1 The no-virtual-pair approximation (NVPA) ........... 238
4.13.2 The NVPA as an antidote to “continuum dissolution” . . 239
4.13.3 The NVPA and “variational collapse” ................ 242
4.13.4 Semirelativistic approaches ........... ... ... ... ... 243
A strategy for atomic and molecular calculations ............ 243
Density functional theories .......... ... .. .. ... ... ... 245
4.15.1 Basicideasof RDFT .. .. ... .. ... .. ... .. ... ...... 246
4.15.2 The relativistic Hohenberg-Kohn theorem ............ 247
4.15.3 The relativistic Kohn-Sham equations................ 248
4.15.4 Exchange and correlation functionals ................ 249
4.15.5 The optimized potential method..................... 252

References . ........ .. . e 253



Contents XV
Part IIT Computational atomic and molecular structure
5 Analysis and approximation of Dirac Hamiltonians ........ 259
5.1 Self-adjointness of free particle Hamiltonians . ............... 260
5.1.1 Free particles: the Schrodinger case . ................. 260
5.1.2 Free particles: the Diraccase........................ 261
5.2 Self-adjointness of Hamiltonians with a local potential........ 262
5.2.1 The Schrodinger case .............ccoviiiiiiia.. 263
5.2.2 TheDiraccase ........o.iuiiniiiiiiiin .. 264
5.3 The radial Dirac differential operator ...................... 265
5.3.1 The boundary condition at a singular endpoint........ 266
5.3.2 The Dirac radial operator with one singular endpoint .. 267
5.4 The radial Dirac equation for atoms ....................... 270
5.4.1 Power series solutionsnear 7 =0 .................... 272
5.4.2 Power series solutions in the nonrelativistic limit ...... 273
5.4.3 The boundary condition at the origin ................ 274
5.5 Variational methods in quantum mechanics . ................ 274
5.5.1 Min-max theorems and the Ritz method ............. 276
5.5.2 Convergence of the Rayleigh-Ritz eigenvalues in
nonrelativistic quantum mechanics................... 279
5.5.3 Convergence of the Rayleigh-Ritz method in
nonrelativistic quantum mechanics................... 283
5.6 The Rayleigh-Ritz method in relativistic quantum mechanics. . 285
5.6.1 The finite matrix method for the Dirac equation ...... 285
5.6.2 Convergence of Rayleigh-Ritz methods for Dirac
Hamiltonians ........ ... .. i 287
5.7 SpIinor basis Sets. ... ..ot 290
5.8 L-SpINOrs . ..ot 293
5.8.1 Kinetic matching and the nonrelativistic limit......... 295
5.8.2 Orthogonality properties ............ ... .. .. ... ... 295
5.8.3 Linear independence of L-spinors .................... 296
5.8.4 Completeness of L-spinors . ......... .. ... ... ...... 297
5.8.5 Charge conjugation and L-spinors ................... 297
5.8.6 Construction of H’%/, wa/, and UPP" matrices for
hydrogenic atoms. .. ... .. .. . .. .. . i .. 298
5.8.7 Numerical study of L-spinor performance in
hydrogenic atoms. . ...... ... .. . i 299
5.9 S-SPINOTS . o .ottt et 303
5.9.1 Construction of HBB/, SP5" and UPP for hydrogenic
ALOMIS . . .ot 304
5.10 G-SPINOTS .« .ottt 305
5.11 Finite difference methods . ........ .. .. ... ... . .. ... .. 307
5.11.1 Methods of solution ........... .. .. .. .. . .. ... ... 309



XVI  Contents

5.11.2 Acceptable solutions ................ .. ... .. ... 312
5.12 Finite element methods .......... ... .. .. .. ... ... ... .... 315
5.12.1 B-Splines . . ..o it 316
5.12.2 Variational formulation of finite element schemes ... ... 316
5.12.3 Schrédinger equations. . ........... ... oo .. 318
5.12.4 Dirac equations . ...........oiiiiiiiiiii i 319
References. ... ... ... . . 322
6 Complex atoms ....... ... .. .. .. 325
6.1 Dirac-Hartree-Fock theory ...... .. .. . .. ... ... .. .. .. 325
6.2 One-electron matrix elements of tensor operators ............ 327
6.2.1 2-spinor matrix elements of even operators............ 328
6.2.2 2-spinor matrix elements of odd operators ............ 330

6.3 Angular reduction of the Dirac Hamiltonian for a central
potential .. ... .. 331
6.4 Matrix elements of 2-body operators ....................... 333
6.4.1 The Coulomb interaction ............ ... ... ... .... 333
6.4.2 Relativistic corrections to the Coulomb interaction ....334
6.4.3 The Gaunt interaction ............................. 335
6.4.4 The Mgller interaction ............... ... ... ... .... 336
6.4.5 The transverse photon interaction in Coulomb gauge. .. 337
6.4.6 The Breit interaction ............ .. .. .. .. .. . ... 339
6.5 Interaction strengths for the magnetic interactions ........... 340
6.5.1 The transverse photon interaction ................... 340
6.5.2 The Breit interaction .............. .. ... ... ... .. .. 344
6.6 Closed shells and configuration averages .................... 346
6.6.1 The Dirac-Hartree-Fock model ...................... 346
6.6.2 Inclusion of magnetic interactions ................... 349
6.6.3 Average of configuration models..................... 350
6.7 DHEF integro-differential equations ......................... 352
6.7.1 Construction of electrostatic potentials............... 356
6.7.2 Construction of magnetic potentials ................. 356
6.7.3 Algorithms for potentials and Slater integrals ......... 359
6.8 Configurations with incomplete subshells ................... 361
6.8.1 Atomic states with incomplete subshells .............. 361
6.8.2 Partially filled subshells in jj-coupling ............... 363

6.8.3 Creation and annihilation operators as irreducible
tensor operators. Quasispin. ........... ... ... ... ... 364
6.8.4 Double tensor operators . .......... .. ... 366
6.8.5 Parentage ........ .. .. ... 367

6.8.6 Coefficients of fractional parentage in the seniority
scheme . ... ... 370
6.8.7 Equivalent electrons in LS-coupling.................. 374
6.9 Atoms with complex configurations ........................ 376



Contents XVII

6.9.1 Recoupling coefficients ........... ... .. .. .. .. 379

6.9.2 Matrix elements between open shell states ............ 379

6.9.3 Matrix elements of two-electron operators of type G ... 382

6.10 CI and MCDHF problems with large CSF sets .............. 384

6.10.1 Decoupling active electrons ................ ... .. .... 385

6.10.2 One-electron matrix elements . ...................... 388

6.10.3 Two-electron matrix elements . ...................... 388

References . ... ... 391

7 Computation of atomic structures ...................... ... 393

7.1 Atomic structure calculations with GRASP .............. ... 393

7.2 GRASP modules ....... ... ... . i 394

7.3 MCDHF integro-differential equations...................... 398

7.4 Solving the integro-differential equations ................... 401

7.5 Starting the calculation ......... ... .. ... .. ... .. 403

7.5.1 Theradial grid....... ... .. . i 403

7.5.2 Thenuclear mass. ....... ..o, 405

7.5.3 Thenuclearsize......... ... . ... 405

7.5.4 Initial estimates for radial wavefunctions ............. 406

7.6 An EAL calculation ......... ... .. . ... ... . .. . 407

7.7 Diagonal and off-diagonal energy parameters................ 408

7.8 Koopmans’ theorem and Brillouin’s theorem ................ 411

7.8.1 Froese Fischer’s analysis............... .. ... ... ... 412

7.9 Control of MCSCF iterations ..................c..oion... 416
7.10 Corrections to the Coulomb interaction: Breit and other

apProxXimations. .. .. ... 418

7.11 QED corrections . ...........iiiii i 419

7.12 Towards higher quality atomic models ..................... 423

7.12.1 CSF sets for electron correlation: active space methods . 424

7.12.2 Example: intercombination transitions in Be-like ions .. 426

7.13 X-ray transition energies ............... .. .. ... 428

References . ..... ... ... 431

8 Computation of atomic properties ............... ... ... ... 433

8.1 Relativistic radiative transition theory ................... .. 433

8.1.1 Line transitions ........... ... .. . . i i 433

8.1.2 Multipole expansion of the radiation field............. 434

8.2 Emission and absorption by one-electron atoms ............. 437

8.2.1 Evaluation of one-electron transition amplitudes. ...... 439

8.2.2 The nonrelativistic limit: Pauli approximation......... 440

8.3 Radiative transitions in many-electron atoms ............... 443

8.3.1 Transitions in highly ionized atoms: Fe XXIIT ......... 443

8.4 Orbital relaxation ......... ... .. 444



XVIII Contents

8.5 Application to atomic transition calculations................ 448
8.5.1 Large-scale calculations of energies and transition rates. 451
8.6 Relativistic atomic photo-ionization theory ................. 452
8.6.1 The differential cross-section for photo-ionization . ... .. 453
8.6.2 Low energies: the electric dipole case................. 455
8.6.3 Angular distributions and polarization parameters for
asingle channel ......... ... .. . il 457
8.6.4 Other aspects of photo-ionization.................... 458
8.7 Hyperfine interactions.......... .. .. . .. i 459
8.7.1 Hyperfine interactions in the many-electron atom. ... .. 461
8.8 Isotope shifts ....... .. i 464
8.8.1 Nuclear motion .......... ... .. ... ... 464
8.8.2 Nuclear volume effect ......... ... .. ... .. .. ... 466
References . ..... ... ... . i 467
9 Continuum processes in many-electron atoms.............. 471
9.1 Relativistic elastic electron-atom scattering ................. 471
9.1.1 Model potentials ......... .. ... . . . i 473
9.1.2 Computational iSSUES .. ...ttt 473
9.1.3 Other approaches ........ .. .. ... .. .. ... . ... 474
9.1.4 Determination of phase-shifts ....................... 475
9.1.5 Summation of the partial wave expansion............. 477
9.2 Electron-atom scattering: the close-coupling method ......... 477
9.2.1 Low-energy elastic and inelastic collisions............. 477
9.2.2 The distorted wave approximation................... 480
9.3 The relativistic R-matrix method . ........... ... .. .. ... .. 480
9.3.1 The radial Dirac equation on a finite interval ......... 481
9.3.2 Bloch operators .......... ... i 483
9.3.3 Theinner region, r <@ .....ovviiiiii i 485
9.3.4 The outer region, 7 > @G ... 489
9.3.5 Matching inner and outer solutions .................. 489
9.4 The Buttle correction ........ ... .. . . i i 492
9.5 R-matrix theory of photo-ionization........................ 493
9.6 The DARC relativistic R-matrix package ................ ... 494
9.7 Truncation of the close-coupling expansion. The
nonrelativistic CCC method ......... ... .. ... ... ... .... 496
9.8 The R-matrix method at intermediate energies .............. 500
9.9 Electron scattering from heavy atoms and ions .............. 504
9.9.1 Early work ....... .. ... . . 504
9.9.2 Electron scattering from the mercury atom ........... 505
9.9.3 Scattering of polarized electrons from polarized atoms. . 509
9.10 The relativistic random phase approximation ............... 513
9.10.1 The RRPA equations .............c.. i .. 513

9.10.2 Radial equations ........... .. .. . . .. 516



Contents XIX

9.10.3 Multipole transition amplitudes ..................... 518

9.11 RRPA rates for photo-excitation and photo-ionization. ....... 520
9.11.1 Photo-excitation ......... ... .. .. .. .. . ... 520
9.11.2 Photo-ionization ......... .. .. ... .. .. 520
9.12 Comparison with experiment............. ... ... ... ... ... 523
9.12.1 Photo-ionization of outer atomic subshells at high Z ... 523
9.12.2 Beyond RRPA ... .. . .. . 526
References . ... ... 529
10 Molecular structure methods ............. ... .. .. .. ... .. 533
10.1 Molecular and atomic structure methods ................... 533
10.2 Dirac-Hartree-Fock-Breit equations for closed shell atoms . . . .. 535
10.2.1 DHFB energy of a closed shell atom ................. 535
10.2.2 Spinor basis function representation ................. 535
10.2.3 Matrix of the radial Dirac operator .................. 536
10.2.4 Coulomb Slater integrals ........... ... ... ... ..... 536
10.2.5 Breit integrals for closed shells ...................... 537
10.2.6 The DHFB Fock matrix ............ ... ... ... .. ... 538

10.3 One-centre interaction integrals ......... ... ... .. ... ... 539
10.4 Numerical examples ............ .. .. 541
10.5 The DHFB method for closed shell molecules ............... 543
10.6 G-spinor basis functions . ......... ... .. . i i 544
10.7 The charge-current density ........... .. ... .. .. . .. ... ... 545
10.8 Two-centre overlaps . ......... ..o, 546
10.8.1 Relativistic expansion coefficients.................... 547
10.8.2 Symmetry properties of I, coefficients ............... 548

10.9 Multi-centre interaction integrals ........... .. .. .. .. ... ... 549
10.9.1 Auxiliary integrals involving HGTFs................. 550
10.9.2 Multi-centre one-electron integrals .. ................. 551
10.9.3 Multi-centre two-electron integrals................... 556
10.10Fock matrix in terms of G-Spinors ............... .. .. ...... 558
10.10.1The BERTHA integral package...................... 560
10.11Electromagnetic field energy ............ .. ... .. ..., 562
10.11.1Interaction energy in terms of internal fields .......... 562
10.11.2The nonrelativistic Fock matrix ..................... 565
10.11.3The relativistic Fock matrix ........................ 565
10.11.4Implementation of the field formulation .............. 566
10.12Relativistic density functional calculations .................. 568
10.13Computational strategies ......... ... 574
10.13.1The Roothaan bound .............................. 575
10.13.2Integral-direct Fock matrix evaluation................ 575
10.13.3Symmetry properties of interaction matrix elements ...576
10.13.4Stepwise refinement . .. ... .. .. Lo 576

10.13.5Level-shifting .. ......... .. ... . .. .. 577



XX Contents

10.14Multiconfigurational Dirac-Hartree-Fock theory ............. 578
10.14.10rbital optimization . ......... ... .. ... .. ... ....... 578
References . ....... ... .. . i 584
11 Relativistic calculation of molecular properties ............ 587
11.1 Molecular symmetry ............o i 587
11.1.1 Diatomic molecules ............ ... . . . ... 589
11.1.2 Polyatomic molecules ........... ... .. .. ... ... .. 591
11.2 Relativistic effects in light molecules ............... ... .... 594
11.2.1 Nonrelativistic Breit-Pauli model .................... 594
11.2.2 DHF and DHFB calculations for water using BERTHA 596
11.2.3 Second-order many-body corrections ................. 598

11.2.4 Relativistic study of the potential energy surface and
vibration-rotation levels of water .................... 599
11.3 Electromagnetic properties of atoms and molecules .......... 601
11.3.1 Gauge transformations in electromagnetic processes. . .. 601
11.3.2 B-Spinors . . .ottt 602
11.4 The Zeeman effect . ......... .. ... 603
11.5 Hyperfine interactions........... ... .. i 606
11.6 NMR shielding in small molecules ......................... 609
11.6.1 NMR shielding constants for 17O in water ............ 611
11.6.2 NMR shielding constants for >N in ammonia ......... 612
11.7 Molecules with high-Z constituents .............. .. .. .. ... 613
11.7.1 Electronic structure of TIF ........ .. ... .. ... ....... 614
11.7.2 Electronic structure of YbF .. ...... .. ... .. .. .. .. 617
11.7.3 DHF+CI study of uranium hexafluoride . ............. 620
References . ..... ... ... 624
A  Frequently used formulae and data ........................ 627
A.1 Relativistic notation ........... .. ... .. ... . 627
A2 Dirac matriCes . ... ..ot 628
A.3 Special functions . .......... . 631
A.3.1 Spherical Bessel functions ............... ... ... ... 631
A.3.2 Confluent hypergeometric functions.................. 632
A.3.3 Generalized Laguerre polynomials ................... 633
A.3.4 Hermite polynomials.......... ... .. .. .. ... ... 634
A.3.5 Incomplete gamma functions........................ 635
A.3.6 Incomplete beta functions .......................... 635
A.3.7 Continued fraction evaluation ....................... 636
A.4 Central field Dirac spinors and their interactions ............ 636
A.4.1 Central field Dirac spinors . ..................oo.... 636
A.4.2 Matrix elements of simple ITOs ..................... 639

A.4.3 Magnetic interactions . ............c. i 642



Contents XXI

A.4.4 Effective interaction strengths for two-body operators . . 644

A.5 Open shells in jj-coupling ............ ... .. 651
A.6 Exponents for atomic and molecular G-spinors .............. 654
A.7 Software for relativistic molecular calculations............... 662
A7.1 BERTHA ... 662
A7.2 DIRAC .. 662
A73 MOLFDIR ... 663
References. ... ... 664
B Supplementary mathematics................. .. ... ... ... 665
B.1 Linear operators on Hilbert space................ .. .. ... .. 665
B.1.1 Hilbert spaces...... ... .. 665
B.1.2 Linear operators ................iiiiiiiiiiiiaan 665
B.1.3 Spectrum and resolvent of linear operators............ 666
B.1.4 Self-adjoint operators ............ .. .. .. . ... 666
B.1.5 Observables and self-adjoint operators ............... 669
B.1.6 Commuting operators...............oovuuiuninan... 671
B.1.7 Unitary and anti-unitary operators .................. 671

B.2 Lie groups and Lie algebras ........... ... .. .. ... ... ... 673
B.21 Lie groups . ... ...t 673
B.2.2 Liealgebras ........ .. .. . i 674
B.2.3 Representations of Lie groups and Lie algebras ........ 676
B.2.4 The Cartan-Weyl classification ...................... 677
B.2.5 Casimir operators .............c.c.oiuiiiiianian... 678
B.2.6 Kronecker products of group representations .......... 679
B.2.7 Tensor operators and the Wigner-Eckart theorem. ... .. 681

B.3 Quantum mechanical angular momentum theory ............ 683
B.3.1 Therotation group ......... .. .. ... 683
B.3.2 Abstract angular momentum. ....................... 684
B.3.3 Orbital angular momentum ......................... 685
B.3.4 Representation functions ................ .. ... .. ... 687
B.3.5 Kronecker products of irreducible representations. . .. .. 691
B.3.6 Coupling of three or more angular momenta, .......... 693
B.3.7 The 3j-symbol ...... .. ... . .. . 694
B.3.8 The 6j-symbol ........ ... .. 694
B.3.9 The 9j-symbols ........ .. .. . 696
B.3.10 Graphical treatment of angular momentum algebra . ... 697
B.3.11 Diagrammatic treatment of Clebsch-Gordan coefficients 699
B.3.12 Diagrammatic treatment of 3jm-symbols ............. 701
B.3.13 Generalized angular momentum coupling schemes . .. .. 703
B.3.14 GCG and njm coefficients . . . ......... ... ... .. ... 706
B.3.15 Manipulating angular momentum diagrams ........... 708
B.3.16 Tensor operators and the Wigner-Eckart theorem. ... .. 709

B.3.17 Composite tensor operators.................covou... 711



XXII Contents

B.3.18 Diagrammatic representation of tensor operators ... ... 713
B.4 Relativistic symmetry orbitals for double point groups ....... 717
B.4.1 Construction of symmetry orbitals................... 717
B.4.2 Linear independence of molecular symmetry orbitals ... 719
B.4.3 Reduction of operator matrices...................... 719
B.4.4 Timereversal ....... ... ... .. 720
B.4.5 The TSYM software package........................ 722
B.5 Basis sets in atomic and molecular physics.................. 722
B.5.1 The Coulomb Sturmian functions.................... 727
B.5.2 Completeness and linear independence of Coulomb
STUIMIANS . o et 729
B.5.3 Basis sets of exponential-type functions .............. 730
B.6 Finite difference methods for Dirac equations ............... 733
B.6.1 An existence theorem ............ ... ... ... ... .... 733
B.6.2 Initial value methods ......... ... ... ... .. . .. .. 734
B.6.3 Linear multistep methods .......................... 736
B.6.4 The nodal structure of Dirac radial wavefunctions ... .. 738
B.6.5 Discretization of two-point boundary value problems . .. 741
B.6.6 Two-point boundary value problems: the deferred
correction method ....... ... .. . . L L 744
B.6.7 Construction of difference corrections ................ 746
B.6.8 Single stepping algorithms . ........... ... ... .. .... 748
B.6.9 Stepping outwards from the origin................... 749
B.6.10 Algorithm for the outer region ...................... 751
B.6.11 The boundary condition at T'=tn ......... ... . 753
B.6.12 The boundary condition at the origin ................ 754
B.6.13 Improving a trial solution ................. ... .. .... 755
B.7 Eigenfunction expansions for the radially reduced Dirac
eqUALION ... 757
B.7.1 The fundamental lemma ........................... 757
B.7.2 Boundary conditions: the two-point boundary value
problem . ... . .. 758
B.7.3 Boundary conditions at the nucleus . ................. 759
B.7.4 Pauli approximation at Ro...................... .. .. 759
B.7.5 The MIT bag model at Ro............ ... ... ... .... 759
B.7.6 The eigenvalue spectrum ................ .. ... .. .... 760
B.7.7 The inhomogeneous boundary value problem.......... 761
B.7.8 Eigenfunction expansions............. ... ... oo 766
B.8 Iterative processes in nonlinear systems of equations ......... 769
B.9 Lagrangian and Hamiltonian methods...................... 772
B.9.1 Lagrange’s equations............. .. .. .. ... ... .. 772
B.9.2 Hamilton’s equations ............ .. .. .. .. .. .. .. .. e
B.9.3 Symmetries and conservation laws ................... 775
B.10 Construction of E coefficients . ............................ 7T

B.10.1 E-coefficients through Cartesian intermediates ........ T



Contents XXIII

B.10.2 Recurrence relations for E-coefficients .. .............. 779
B.10.3 Implementation iSSUES. .. ... .vtii i 780
References . ... e 783



Part 1

Relativity in atomic and molecular physics



1

Relativity in atomic and molecular physics

1.1 Elementary ideas

The standard quantum mechanical theory of atomic and molecular struc-
ture [1, 2, 3] assumes the constituent particles move nonrelativistically. It
models atoms and molecules with a many-particle Schréodinger equation whose
solutions enable us to predict physical quantities. The nuclei are represented
as point masses; the a-th nucleus carries a positive electric charge Z,e, say,
whilst each electron, some 2000 times lighter than the individual nucleons
making up the nucleus, carries a charge —e. The moving particles interact
according to Coulomb’s law: nucleus a attracts an electron at distance r with
a force —Z,e? /4megr?, electrons repel each other with a force +e2/4meqgr?,
whilst nuclei a and b repel each other with a force +Z,Z,e?/4megr?. The
electron has an intrinsic angular momentum, its spin s, associated with an
intrinsic magnetic moment. The spin state is characterized by the eigenvalues
of the quantum mechanical operator s? and (conventionally) its z-component
s, where s = %ha and o = (Ux,ay,az) denotes a vector whose Cartesian
components are the Pauli spin matrices. Thus s, can take values %ha, where
o = *1. Each electron is described in configuration space by three position
coordinates r and its spin label, o, on the axis of quantization. Nonrelativistic
theory does not couple the spatial degrees of freedom and the spin.

Let g; denote the coordinates (r;,0;) of the i-th electron. The quan-
tum mechanical wavefunction for a system of N indistinguishable electrons,
Y (q1,q2,---,qn,t), is such that [¥(qy,qa, - .., qn,t)|? can be interpreted as a
probability density for finding the system in the configuration ¢, g2, ..., qn at
time ¢. Because the electrons are indistinguishable, the result of interchanging
the coordinates ¢; and g; (¢ # j) must give the same probability distribution,
so that this operation can at most multiply ¥ by a phase factor. For fermions,
particles such as the electron with intrinsic spin %h, the N-electron wavefunc-
tion is totally antisymmetric with respect to such permutations. This has the
effect that ¥(q1,q2,...,qn,t) = 0 whenever ¢; = ¢;: no two electrons can
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be at the same point in configuration space at the same time. This is one
mathematical expression of Pauli’s exclusion principle.

The Schrodinger equation cannot be solved in closed form for anything
more complicated than a one-electron system acted on by relatively simple
external forces. Most interactions with external electromagnetic fields, light
sources, charged and uncharged projectiles, or other atoms or molecules can
only be treated by making approximations. Modern computational techniques
for the calculation of atomic structures are described in, for example, such
books as Fischer et al. [4], and in older books on atomic and molecular struc-
ture such as those by Pauling and Wilson [5], Murrell, Kettle and Tedder [6],
and McWeeny [7]. These books generally present relativistic effects as a mi-
nor correction to models of atomic and molecular structures and processes.
However, relativistic quantum electrodynamics (QED) provides a more fun-
damental starting point from which these nonrelativistic models, depending
on electromagnetic forces, the spin of the electron, and the doctrine of the
Pauli exclusion principle, emerge naturally.

Today, few people would question the evidence in favour of a relativistic
model of the physical world as a more exact description than the Newto-
nian model that preceded it. Although Bohr’s 1913 analysis of the hydrogen
atom [8] successfully predicted the gross structure of its line spectrum, it was
not long before Paschen’s observations [9] of the fine structure of the hydro-
genic spectrum of He' appeared in 1916. They were published in Annalen der
Physik just before Sommerfeld’s relativistic extension of Bohr’s model [10] in
which he predicted the fine structure independently. Schrédinger took the
wave equation

(32 /20t — 02027 — 02)0y> — 0% /0% — m2c? /h2) Y =0, (1.1.1)

as a relativistic starting point in his first paper on wave mechanics in
1926 [11]'. He then introduced electromagnetic interactions and attempted to
calculate the hydrogen spectrum; he obtained the expected Balmer formula,
but not the observed fine structure interval. This posed several problems: in
particular, although one can write a continuity equation

ap
ot

in which the probability current

+divj=0 (1.1.2)

§ == 5o (U (V) = (VO )},
has the familiar nonrelativistic form, the associated expression for the proba-

bility density,
_ih LY _ o™ "
P = ome ot ot ’

! Pais [12, pp. 286 et seq.] has an illuminating historical discussion.
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is not positive definite. Evidence that this serious defect was due to the pres-
ence of a second order time derivative in (1.1.1) provided motivation for
Dirac’s search for a first order wave equation with an unambiguously posi-
tive probability density [13, 14]. Dirac’s free particle equation, in the notation
we shall use in this book, reads

{v*pu — me/h} b =0, (1.1.3)

where the spinor wavefunction v has four coupled components, and Einstein’s
summation convention over the space-time component indices 4 = 0, 1, 2, 3
applies. For a particle with charge +e moving in an electromagnetic field with
four-potential A*, this becomes

{(v*(py — eA,) — me/h} 4 = 0. (1.1.4)

As usual, p,, = ihd/0x" are the components of four-momentum and the ~*
are 4 x 4 matrices. The charge density j° = cp and current density j are
now components of a four-vector j* = eci)ty%v#1), so that the probability
density p = 9T is clearly positive definite. The current density three-vector
is 7 = ectpfanp. where o has matrix valued components: a = (a!,a?,a?)
with of = 4% for 4 = 1,2, 3. In relativistic notation, the continuity equation
(1.1.2) becomes

Ouj" =0. (1.1.5)

Dirac’s theory gives a very satisfactory account of the spectrum of atomic
hydrogen, including the fine structure [15, 16]. The existence of electron spin
emerges in a natural way, along with “spin-orbit coupling”: in the absence
of a preferred spatial direction, the total angular momentum of the electron,
j =1+ s, is a constant of the motion, although neither I = r x p, the orbital
angular momentum, nor s are constants as they would be in nonrelativistic
theory.

The Dirac energy spectrum for a free electron has not only the expected
continuum E > mc?, but also another continuum of “negative energy” states
with E < —mc?. It took some time before Dirac was able to interpret the neg-
ative continuum in terms of the states of a new anti-particle, the positron, hav-
ing a charge +e and the same mass as the electron [17]. Cosmic ray positrons,
which were observed by Anderson a year later [18], provided crucial support
for this theoretical prediction. The hydrogenic atom has a point spectrum of
bound states in the interval —mc? < E < mc?, having an accumulation point
at the series limit £ = mc? as well as the two continua of scattering states.
Although this is now well established, echoes of the confusion associated with
the appearance of negative energy states can still be found in the literature.

In 1929, Breit [19] attempted to extend Dirac theory to the helium atom.
This most memorably added a relativistic correction

e2

8meg

(s 5] RQQR
R2

B(’I’l,’f'g) = — {al.ag—l— }, R:T‘1 —Ta. (].].6)
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to the Coulomb interaction between electrons, now universally known as the
Breit interaction. Various objections have been lodged against Breit’s equa-
tion for helium, in particular that it is not Lorentz invariant and it is only
an approximation to the full relativistic interaction between electrons [20, p.
170]. An expansion of Breit’s equation in terms of the fine structure constant
a adds a family of perturbation operators to the two- (or many-) electron
Schrodinger Hamiltonian [20, p.181]. These perturbations, associated with
the names of Breit and Pauli, are still what most people think of when they
speak of “relativistic corrections” in atomic and molecular physics.

Relativistic self-consistent field equations for closed shell atoms — now
termed Dirac-Hartree-Fock (DHF) equations — were first formulated by Swirles
[21] in 1935.2 Techniques of Racah’s quantum theory of angular momen-
tum [22], summarized in Appendix B.3, were not then available and Swirles’s
equations therefore appear somewhat complicated. Modern relativistic atomic
and molecular structure theory has a more compact and transparent appear-
ance [23] that relies on exploiting the underlying symmetries of Dirac central
field spinors using Racah’s methods (Appendix A.4). Although calculations for
a small number of atoms were performed in the intervening decades, exploita-
tion of DHF theory had to await the arrival of sufficiently powerful computers
in the 1960s. Tables of nonrelativistic Hartree-Fock (HF) solutions for LS-
coupled atomic ground states covering more or less the whole Periodic Table
of the elements were first published in 1972 and 1973 [24, 25] at more or less
the same time as similarly comprehensive tables of LS average of configuration
DHF solutions [26, 27]. We shall see in §1.3.5 how these compilations have con-
tributed to our understanding of relativistic effects in many-electron atoms.
The steady growth in computer power since that epoch has been accompanied
by related elaboration of the theoretical and computational machinery for rel-
ativistic modelling of many-electron atoms, which we describe in Part IIT of
this book. Today, multi-configurational self-consistent field models (MCDHF),
many-body perturbation theory (MBPT) and configuration interaction (CI)
models can yield highly accurate predictions of atomic properties. The ap-
proximate energy levels and wavefunctions generated by these methods are
the starting point for further investigations of radiative and collisional pro-
cesses of interest for a range of applications in cosmology, astronomy, solar
physics, controlled fusion, laser physics and other areas [28].

It has taken longer for relativistic effects to find a role in quantum chem-
istry. This is easy to understand: relativistic effects are small in the first two
rows of the periodic table, and nonrelativistic models are a good first approx-
imation for most descriptions of chemical processes involving first and second

2 Tt has been common to use the notation DF and MCDF for the relativistic self-
consistent fields, omitting the H for Hartree. This book uses DHF and MCDHF
in recognition of Hartree’s continuing influence. Swirles’s original paper [21] was
written at Hartree’s suggestion and the input of his former students David F.
Mayers and Charlotte Froese Fischer to today’s software for relativistic atomic
structure has been crucial to its success.
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row atoms. Relativistic effects thus may appear unimportant for example in
much of theoretical organic chemistry. Many accepted Dirac’s 1929 dictum [29]
that relativity “...give(s) rise to difficulties only when high-speed particles are
involved and are therefore of no importance in the consideration of atomic and
molecular structure and ordinary chemical reactions ...”. We now recognize
that this is a gross oversimplification. Reliable relativistic quantum mechan-
ical models are essential for molecules containing heavier elements such as
transition metals, lanthanides, or actinides [30]. Even in molecules containing
only light elements, recent work has revealed that relativistic effects should
not be forgotten [31].

Atomic calculations show that relativity most directly affects the dynam-
ics of core electrons suggesting that it may be possible to model the combined
effect of screening and relativity on outer electrons by an effective potential
using nonrelativistic dynamics. This line of thought motivates ab initio the
use of relativistic effective core potentials (RECP) in conjunction with vari-
ous approximations to the Breit-Pauli Hamiltonian [32]. Spin-dependence is
often averaged when constructing RECPs, so that some parts of the Breit-
Pauli Hamiltonian have to be reintroduced later as a perturbation to account
for fine structure effects. Other approaches use methods that approximate
the relativistic wavefunctions in 2-component form, either by eliminating the
“small” component of Dirac spinors from the energy expression or by using
the generalized Douglas-Kroll transformation approach) [33, 34, 35, 36].

The main problem of principle affecting all these schemes is that it is
very hard to estimate the errors associated with intuitive approximations and
ad hoc parametrizations. Although nonrelativistic calculations are relatively
cheap, relativistic perturbation operators are often difficult to handle, invit-
ing approximating shortcuts. Benchmarking these approximations is a major
chore. This book aims to formulate a practical approach to relativistic atomic
and molecular structure in which the accuracy can be improved systematically
to whatever level is desired.

1.2 The one-electron atom

1.2.1 Classical Kepler orbits

Hydrogenic atoms are the starting point for both relativistic and nonrelativis-
tic theories of atomic and molecular structure. A single electron, mass m,
electric charge —e, interacts with a stationary point charge +Ze at the ori-
gin of a Cartesian reference frame. In nonrelativistic classical mechanics, the
mathematics is the same as for Newtonian gravitation. [37, §3-7] The energy
E and the orbital angular momentum vector I are constants of the motion
that together serve to characterize the orbits. The general equation for the
orbit in plane polar coordinates (r,6) is
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1 k

- = %{1—1—6008(9—1—@)}, (1.2.1)
where k = Ze? /4meg and eq is the electric constant [38, Table XXIII]. This
represents a conic section in a plane perpendicular to I, with one focus at the

origin and eccentricity
/1 n 2E|l?
€= —,
mk?

where F is the particle energy. The arbitrary constant « serves to define the
direction in the orbital plane for which the polar angle 0 is taken to be zero.
The nature of the orbit depends on the energy:

o —mk?/2|l|> < E < 0: In this case, 0 < € < 1 so that the right-hand side
of (1.2.1) can never vanish, r lies between finite limits, and the orbit is an
ellipse. The closest approach is at r = |I|?/[mk(1 + €)] and the maximum
distance is 7 = |I|?/[mk(1 — €)].

When e = 0, the orbit is a circle with radius r = [2/mk and energy
E = —-mk?/2|l|%.

E = 0: the orbit is a parabola and € = 1.

E > 0: Then € > 1, and the orbit is a hyperbola; the two values of 6 at
which r — oo determine the angle between its asymptotes.

As the radius is a minimum at 7,,,;, = [I|?/[mk(1 + €)], for all values of e,
the the velocity is perpendicular to the radius there, and the maximum speed
i Vmazw = [U|/Mrmin. The electron is said to be bound to the centre of force
when E < 0 and unbound when E > 0.

1.2.2 The Bohr atom

Bohr’s first attempts to understand the spectrum of atomic hydrogen from
1913 onwards [8] naturally assumed that the electron described a closed clas-
sical orbit. The energy E of the particle, the orbital average of the kinetic
energy < T > and the potential energy < V' > satisfy the virial relation

1
E:§<V>=—<T>. (1.2.2)

Analysis of the optical spectra of atomic hydrogen, the simplest of all atoms,
revealed that the frequencies of the spectral lines could be fitted to Rydberg’s

formula
B 1 1 5
where m,n are integers, inviting the hypothesis that radiation was emitted

when the atom made a transition between two states whose energies fitted a
formula
R

n2

E, =
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Bohr’s analysis reproduced this formula with R = 272me*/ch® by making the
remarkable assumption that the angular momentum |I| of the classical orbit
can take only the values

l| =nh, h=h/2n,

where h is Planck’s constant and n is an integer; the angular momentum was
said to be quantized.

1.2.3 X-ray spectra and Moseley’s Law

In 1913, Moseley [39] studied the K-shell X-ray lines of the metals from Ca
(Z=20) to Zn (Z=30). His conclusion, that the square root of the frequency
of each corresponding X-ray line was approximately proportional to Z, was
crucial for settling the order with which elements are placed in the Periodic
Table [40, §16-3]. Moseley’s regularities were subsequently shown to hold for
the rest of the Periodic Table, although screening and relativistic effects cause
departures from Moseley’s law at high Z. The elementary theory of X-ray lines
is that of a one-electron spectrum [2, §913], in which the frequency of each line
is given by a formula similar to (1.2.3) [40, §16-3]. Relativistic effects modify
the Z-dependence as Z increases.

1.2.4 Transition to quantum mechanics

Quantum mechanics describes the motion of a particle in terms of states
whose wavefunctions, (r,t), are labelled by constants of the motion. The
probability of finding the particle in a volume element dv centred on r at
time ¢ is given by |¢(7,t)|? dv. Schrédinger’s wave equation

ihaa—qu/)(r,t) = Hy(r,t), (1.2.4)

where H is the quantum mechanical Hamiltonian operator, determines the
evolution of ¢(r,t). This differential operator is derived from the classical
Hamiltonian by making the subsitutions p — —iAV, r — r. For a particle of
mass m moving in a conservative force field with potential energy V(r) the
classical Hamiltonian is

1
H(p.r) = 59" + V(1)

In our model V(7) is just the potential energy of an electron at a distance
r = |r| from a fixed nucleus of charge +Ze,

Ze?
dregr’

V(r) =

so that the Schrodinger differential operator is
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_EVQ_ Ze?

H =

. 1.2.5
2m dmegr ( )
The solution of (1.2.4) with the Hamiltonian operator (1.2.5) is a standard stu-
dent exercise [5], from which one deduces that the electron has bound states,
replacing the classical elliptic orbits, whose probability density distribution
vanishes exponentially as r — oo and whose energies are given by the formula

mZ2e*

- 32n2e2h2n? (1.2.6)

€nl =
where n is a positive integer. The electron is not confined to the neighbour-
hood of the nucleus when E > 0, so that these solutions correspond to the
hyperbolic orbits. The orbital angular momentum vector I, is a constant of the
motion, as in classical mechanics, but its magnitude I? takes values 1(1+1)R2,
wherel = 0,1,...,n—1 and its projection on a fixed axis, conventionally taken
as the z-axis, takes the 2[+1 values mh, where m = —I[,...,l. The bound state
energies, which are independent of [, agree with Rydberg’s formula (1.2.3) if
R =mZ?%*/32n%e3h? where h = h/27. From the relation (1.2.2), we deduce
that

<T,>=—-F,,

and writing T}, = mv? /2, giving the root mean square velocity

b _ 22 (1.2.7)
c n
where a = €2 /4meghe is the dimensionless fine structure constant and c is the
speed of light (see [38, Table XXIII] for the currently recommended numerical
values of physical constants).
In spherical polar coordinates, the spatial part of the wavefunction of a
bound state of a particle in a conservative central field factorizes into radial
and angular parts,

Ynim (7, ) = const. P%(T) Y0, ), (1.2.8)

where the angular amplitude reflects the spherically symmetry of the problem,
and only the radial part depends on the details of the potential.

1.2.5 Sommerfeld’s relativistic orbits and Dirac’s wave equation

Elementary relativity theory tells us to expect deviations from Newtonian
mechanics when speeds reach an appreciable fraction of the speed of light.
In the Kepler problem, the particle speed attains its maximum at closest
approach to the centre of force, namely

Umaw _ k

=—1 . 1.2.
= it es >0 (1.2.9)
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Clearly, vmax is inversely proportional to |l], so that we can anticipate the
largest effects in states with the lowest angular momentum.

Elementary relativistic kinematics [12, page 87] tells us that a particle
moving in some reference frame with velocity u has four-momentum p#, where

p’ = E/c=mey(u), p'=muy(u), i=1,2,3. (1.2.10)

with y(u) = 1/4/1 —u2/c? where u® are the Cartesian components of u in
the given reference frame, u = |u|, E is the energy, and c is the speed of light.
These equations are often said to express the relativistic variation of mass
with velocity. For low speeds we can expand ~(u) in powers of u/c giving

2 4 2

mu 3mu ) . U

E=md®+ —+"——+..., =mut 14+ — + ...
mc+2+862+ D mu(+262+>

When u/c < 1, these reduce to the Newtonian energy (plus the rest energy,
mc?) and Cartesian components of momentum of a particle. We can expect
to see relativistic effects easily when, say, u?/c? > 0.1 where, for hydrogenic
atoms, u is either v, (1.2.7) or vy, (1.2.9). We conclude

e Flectrons in hydrogenic atoms with low orbital angular momentum [ are
most likely to exhibit the largest relativistic effects.

e The maximum orbital speed ratio vy,q./c given by (1.2.9) is inversely
proportional to [. Like v, /c it is roughly of order a«Z ~ Z/137. In the
region of the actinides (89 < Z < 103), aZ ~ 2/3. Relativistic effects
are thus likely to be quite important for understanding the properties of
high-Z atoms and materials containing them.

Sommerfeld’s investigations in 1914-15 [10] showed that the classical orbits
were approximately ellipses whose axes precess about the normal to the plane
of the motion. He concluded that the orbital energy was

4 2 274
9 me Z oz (13 4
Enk = mc- — m |:TL2 + 7 (k‘ - % + O(OZ ) (1211)

wheren=1,2,3,...and k=1+1=1,2,...,n. The first term on the right is
the rest energy of the electron, the second is just Balmer’s formula (1.2.6), and
the next term gives the lowest order relativistic corrections. Dirac’s relativistic
wave equation for hydrogenic atoms, (1.1.4), is nowadays written (see §3.2)

0 Ze?
iﬁ—w:Hw, H=ca-p+ pfmc — <
4megr

5 (1.2.12)

Its solutions in spherical polar coordinates for energy E have the 4-component
structure (3.2.4):

_ 1 PEN(T)XHm(ea (P)
YErm(T) = const. - (Z’QEH(T)X_,WWMP)) . (1.2.13)
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k= +1,£2, ... is the angular number and, (3.2.9),

Xtwm(0,0) = (Lom—0,1/2,0[1,1/2,5.m) V"7 (0,0)¢,,  (1.2.14)

¢1/2: <(1)>7 ¢—1/2: (?)7

are 2-component spin-orbitals. The angular amplitudes Y;"~7(6, ) are vec-
tor coupled to the spin functions ¢, to give a 2-component function that is
a simultaneous eigenfunction of 52, I?, s2 and j,. Clearly, the orbital angular
momentum, I, and spin angular momentum, s, of the electron are not con-
stants of the motion as in nonrelativistic quantum mechanics. Instead, Dirac
central field spinors, (1.2.13), are eigenfunctions of 5 and j,, where j = I +s.
The two possible coupling modes are defined by writing

where

k=n(+1/2), l=3j+n/2, n=+1 (1.2.15)

which identifies the connection between the labels in (1.2.14) uniquely. We
refer to k as the angular quantum number. The Dirac spinors (1.2.13) can
therefore be characterized by the value of k associated with the upper com-
ponents, or by the total angular momentum labels j and m, where 52 and
j. have eigenvalues j(j + 1)A% and mh respectively. The properties of the
2-component spin-orbitals, x«m, presented in Chapter 3 and elsewhere, are
critical for the relativistic quantum mechanics of atoms and molecules. They
ensure that the linear space spanned by the 4-component spinors ¥ g, (1),
and also by the 2-component spinors X4+xm, for m = —j,—j+1,...,+j is a
representation space for a (25 + 1)-dimensional representation of the rotation
group. Notice that although the 2-spinor components of (1.2.13) are different,
each one factorizes like the Schrédinger wavefunction (1.2.8) in a central field.
We define the principal quantum number by

n=n,+ |kl (1.2.16)

so that we label bound states with the triple nkm (or alternatively nljm).
For low Z, €,; (1.2.6) is close to the shifted Dirac eigenvalue

€nr = Fny — mc? (1.2.17)

for the x values of (1.2.15). It is therefore useful to retain the spectroscopic
letters s,p,d, f,g,... corresponding to | = 0,1,2,3,4,..., for labelling the
Dirac states; when convenient we shall replace the label nx by nl;. Thus the
lowest Dirac states of hydrogenic atoms can be labelled 1s;/2, 251/2, 2p1 /2,
2p3/2, ... The energy difference between the levels nl; with j = [+ 1/2 is
referred to as the fine structure splitting of the nonrelativistic energy level.
For bound states, the energies are given by the eigenvalue equation (3.3.7):
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Epnx =mc*\/1 —a2Z2/N2. (1.2.18)

N is usually called the apparent principal quantum number

N= Vi TP,

in which the non-negative integer n, is the inner or radial quantum num-
ber and the radial amplitudes Pg.(r), Qrx(r) ~ 7 as r — 0, where
v = +vK? — a?2Z2. For electrons, Pg.(r) approximates the Schrédinger ra-
dial amplitude in the formal nonrelativistic limit o« — 0 (¢ — o0), whilst
QEx(r) = O(a) and hence vanishes in that limit; the former is therefore often
designated the large and the latter the small radial component.? The bound
state radial quantum number n,. counts the number of nodes or zeros in the
large component. When (1.2.18) is expanded in powers of aZ, we recover
(1.2.11) with k replaced by |k| = j + 1/2, so that the allowed energies of a
hydrogenic atom now depend upon the angular momentum quantum number
J (or on |k|) as well as n.

Although Dirac theory was able to explain the gross structure as well as the
fine structure of the spectra of hydrogenic atoms to quite high precision [41,
Chapter VIII], the experiments suggested residual effects, which were firmly
established by the experiments of Lamb and Retherford in 1947 [42]. The
discovery of “Lamb shifts” led to a major re-examination of the theory of
interactions of charged particles with electromagnetic fields and to dramatic
advances in the relativistic theory of quantum electrodynamics (QED) which
are, more than half a century later, still the subject of active experimental
and theoretical research. The Lamb shift, which grows roughly like Z%, is
essential for the good agreement of theory with experiment in X-ray and inner-
shell transitions in atoms with charges greater than Z ~ 15, or in the high-
precision physics of atoms such as hydrogen and helium with small numbers
of electrons [43].

1.2.6 Dirac and Schrédinger charge distributions

A comparison of hydrogenic radial density distributions obtained from ana-
lytic solutions of the Dirac and Schrodinger equations for hydrogenic atoms
allows us to look at the primary dynamical effects of relativity [44] without the
complications introduced by electron-electron interactions in many-electron
systems. The electron density distribution in a hydrogenic atom given by the
wavefunction (1.2.13) can be written as the product of a (scalar) angular
density Aj.|m,(0) = X (05 0) Xt (0, 0),% see §3.2.5, and a radial density

3 This labelling is inappropriate for negative energy states where Qgx (r) is the
large component and Pg.(r) the small component.

4 The Hermitian conjugate of a 2-spinor y = (a) is xT = (a*, b*) where the asterisk

b
denotes complex conjugation.
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Fig. 1.1. Radial charge densities for s-orbitals in hydrogenic Hg"®*: Dirac, solid

lines; Schroédinger, broken lines.
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Fig. 1.2. Radial charge densities for p-orbitals in hydrogenic Hg"®*: Dirac, solid

lines; Schrodinger, broken lines.
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Fig. 1.3. Radial charge densities for d-orbitals in hydrogenic Hg"*: Dirac, solid
lines; Schrodinger, broken lines.

distribution D,, .(r). The angular density is independent of atomic number
and is the same for both upper and lower 2-spinor components. The radial
density is therefore a sum of two terms

D”,R(T) = ‘Pn,fi(r)|2 + |Qn,m(r)|2- (1219)

The density plots for hydrogenic Hg"™* (where the nuclear charge Z = 80 is
large enough to show appreciable relativistic dynamical effects) are presented
in Figs. 1.1, 1.2 and 1.3. The main conclusions [44] are

e Dirac radial density distributions are more compact than their nonrela-
tivistic counterparts. Using the inequalities such as (3.3.24) it is easy to
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show that the (scaled) mean radii, p = (2Zr), satisfy

where p, is the Dirac value, and p,,; the corresponding Schrédinger value.
The relative difference is

§= (pmﬁ - pnl)/pnl = O(O‘Z)Z + O((QZ)4)a

where C' < 0 [44, Equations (10), (11) and Table 2].
e Dirac electrons are more tightly bound than their Schrédinger counter-
parts:
Enr < €nl (1.2.21)

where €, given by (1.2.18) and (3.3.25), is independent of the sign of &,
and €,; is given by by (1.2.6).
e Spin-orbit splitting. More precisely,

€n, k=l < €n,k=—1—-1 < €nl,

so that orbitals nk with x = 41 are more tightly bound than those with
k = —I — 1. The splitting is of order O(a*Z*).

e The radial component P, (r) approaches the Schrodinger radial wavefunc-
tion in the nonrelativistic limit o« — 0,¢c — oo, and in this case the Pauli
formula (8.2.14)

Qn,n ~ 276

! <dp"*“ + “P"’“> {1+0(1/*)}

is a good first approximation. It follows that the zeros of the two compo-
nents interlace; as a result there is no radius at which the density D, (r)
(1.2.19) vanishes. The nonrelativistic zeros in the radial density are there-
fore replaced by positive minima,

dr r

Noticeable relativistic effects require the relative mean orbital velocity v2 /c?
to be at least about 0.1, so that the criterion (1.2.7) from mean kinetic energy
gives Z/n > 40. The mean speed is less than the maximum attainable so that
a better indicator might be the fraction of the orbital charge density within
the sphere inside which the (classical) electron moves at relativistic speeds,
given by Z/r > 0.1mc?/E},. This gives r/ag < 1072Z, which for Hg™* gives
r/ag < 0.08. Figures 1.1, 1.2 and 1.3 shows that a reasonable proportion of
the total charge density of electrons with || = 1 (s1/2 and p; /o) is indeed
located in that region. The proportion decreases as the angular momentum
j = |k| — 1/2 increases.

1.2.7 The Dirac hydrogenic spectrum at high Z

The properties of the Dirac hydrogenic states depart more and more from
those of the corresponding nonrelativistic model as Z increases. Scattering
solutions are asymptotically proportional to exp(+ipr) at large radii, where
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Fig. 1.4. Dependence of Dirac eigenvalues on atomic number.

E?/c® —p? =m?c, (1.2.22)

as in classical relativistic mechanics (1.2.10). This Lorentz invariant equation
has two solutions +|E|, one in each continuum when |E| > mc?, so that p
is real. When |E| < mc?, p = +i\/m?2c2 — E2?/c? is pure imaginary so that
there is only one square integrable bound solution asymptotically proportional
to exp(—|p|r). For each value of k, there is an increasing sequence of point
eigenvalues in the bound state gap converging to a limit point at mc?.

The dependence of the bound state energies from (1.2.18) on Z is depicted
in Figure 1.4. The finite size of the nucleus becomes more important at high
Z, because the proportion of the electron density penetrating the nuclear re-
gion increases signficantly. For a point nucleus with charge Ze, normalizable
solutions cease to exist for Z > |k|/a & 137|k|, as shown by the dotted curves
for || = 1 (s1/2 and p;/2). The corresponding solid lines were calculated using
plausible model nuclear charge distributions with nuclear radii roughly pro-
portional to A'/3, where A is the nuclear mass number. Numerical eigenvalues
can be found for more or less arbitrarily large Z, although the 1s; /5 curve de-
scends into the lower continuum in the supercritical region Z > Z..;; ~ 172.
There have been speculations that “superheavy” nuclei with lifetimes long
enough to be detectable may exist with nucleon numbers in so-called “islands
of stability” in the region shown which have fuelled research into the associ-
ated atomic properties [45]. This brief description raises a variety of questions
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of physical interpretation. The lower continuum appears to be an inescapable
consequence of relativity theory. The most immediate problem is what effect
this has on the stability of the hydrogenic ground state. In nonrelativistic
quantum mechanics this is the lowest energy state available for a bound elec-
tron. The unavoidable appearance of negative energy states suggests that the
1s1/2 bound state cannot be stable. Dirac [46] proposed in 1929 a “vacuum”
state in which each negative energy state has been assigned to an electron
keeping all states with £ > —mc? vacant. The 1s1/9 state is then the lowest
available to the added atomic electron; this arangement is stable because the
electron cannot decay to occupied lower states without violating the Pauli ex-
clusion principle. The physics of a hypothetical system with Z > Z.,.;; remains
open.

If we wish to observe an electron that has been extracted from a negative
energy state, it must have been given sufficient energy to be assigned to a state
with energy F > Fps. The negative energy “hole” left behind behaves like a
particle with positive energy and charge 4e, now recognized as a positron.
The process is usually described as creating an electron-positron pair; such
pairs, either real or virtual (when they appear as intermediate states of a
perturbation expansion), can be created without affecting the total charge of
the system. The appearance of negative energy states in the theory forces us
to develop a formalism that can cope with an indefinite number of particles:
quantum electrodynamics (QED).

Attempts have been made to realize high effective charges in superheavy
quasi-molecules created by collision of heavy ions: for example, at high enough
kinetic energy the nuclei of the Pb+Pb system can be made almost to touch.
The combined nuclear charge of 164, just below the theoretical limit Z.,.;,
is high enough to test ideas on the physics of supercritical electric fields in
QED [45, Chapter 11]. However, physics and chemistry is largely concerned
with elements having much lower atomic numbers so that these fascinating
issues are rather remote from the more everyday concerns with which this
book deals.

1.3 Many-electron atoms

The relativistic changes in the electronic structure of hydrogenic atoms are
modified by the mutual interactions of electron charges and currents in many-
electron systems that propagate secondary relativistic effects across the atom
or molecule. The relativistic “contraction” of hydrogenic orbitals naturally
plays a prominent part: 1s, 2s, and 2p; /o electrons, which are anyway the
most compact, screen the nuclear charge more effectively in relativistic mod-
els so that electrons with higher angular momentum (nps,2, nds /2, ndsz, - . .)
tend to expand and to have correspondingly lower binding energies. All bound
electrons show evidence of the interaction between the direct dynamical rel-
ativistic contraction and the indirect relativistic expansion due to changes in
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electron screening of the nuclear charge and the interactions between sub-
shells [47]. We shall look at this from two points of view. A comparison of
eigenvalues from (nonrelativistic) Hartree-Fock (HF) and (relativistic) Dirac-
Hartree-Fock (DHF) calculations is sufficiently realistic to model binding en-
ergy trends across the Periodic Table. Secondly a survey of measured succes-
sive atomic ionization potentials gives insight into the buildup of electronic
shell structure in individual atoms and shows direct evidence of relativistic
effects similar to those revealed by the HF and DHF models. This section uti-
lizes a heuristic approach to theoretical atomic structure, which reflects the
way in which the subject has developed historically in the last three-quarters
of a century.

It will be convenient from now on to work in Hartree atomic units: the
unit of mass is that of the electron m, =~ 9 1073! kg.; the unit of length is
the Bohr radius ag = 4megh?/mee? ~ 5.29 1071 m ; the unit of energy is
Ej, = e?/Amegag = a®.mec? ~ 4.36 10718 J where a = €2 /4meghe ~ 1/137.036
is the fine structure constant. In atomic units, the unit of time is 7 = h/E}, ~
2.42 10717 s and ¢, the speed of light, is a=! ~ 137.036. See [38] for current
recommended values of these physical constants.

1.3.1 Central field models of the atom

The central field model [2, Chapter 6] has given invaluable insight into the
properties of many-electron atoms. The charge distribution in an isolated
atom in its ground state is almost spherically symmetric, suggesting an atomic
Hamiltonian of the form

N
Hy =Y {ti+U(r:)} (1.3.1)

i=1
where ¢; is the free particle Hamiltonian operator for the i-th electron (m = 1)

P {pf/ 2 (Schrodinger case)

ca; - p; + Bimc?*  (Dirac case)

and U (r;) is the effective potential energy of an electron at position r;, where

Z
—— + const. r—0,
r

(Z-N+1)
—— =0
T

U(r) ~ (1.3.2)

and N is the number of electrons in the atom.

The electrons move independently in this model, so that the atomic
wavefunction must be constructed from products of orbital wavefunctions,
one for each physical electron. These orbitals, of central-field type, have
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the nonrelativistic form (1.2.8) or the relativistic form (1.2.13). The sim-
plest conceivable wavefunction for the atom has the form of a product
D := g, (1) VYa,(T2) ... Yay (rn) where, for nonrelativistic electrons, a; =
n;lym;o;, 0; = £1/2 being the spin projection. Electrons are indistinguish-
able so that, when P is any permutation acting on the set {ay,aqs,...,an},
the function P @ is also a wavefunction for the system Pauli’s exclusion prin-
ciple allows at most one electron to have the orbital label a;, and this is best
accomodated by choosing a determinantal wavefunction

¢a1 (rl) wal (TQ) s wal (TN)
U= Z(—l)ppdi‘ = const. Vas (1) Vs (12) - Yau (1) (1.3.3)
P

where p is the parity of the permutation P. The determinant vanishes when-
ever any two rows have the same label, a; = a;, or two columns the same
argument: r; = r; with ¢ # j. The same construction is valid for Dirac elec-
trons with the labelling a; = n;x;m;. We shall usually assume when dealing
with bound states that the orbitals are orthonormal.

1.3.2 Closed and open shells

We obtain a single electron density by integrating |¥|? over all particle coor-
dinates save one; the resulting volume density of electrons is pior = Zl Pa;
where p,, = [tbq,|?. The number of nim particles contained in the spherical
polar volume element dr = 72 dr df2 is

Prim(T) dr = |Pnl(r)|2\Ylm(9,<p)\2dr df? (1.3.4)

for a normalized nonrelativistic wavefunction of the form (1.2.8). From the
properties of spherical harmonics,

l
dsf?
Z Prim (1) dr = | Py ()| dr.(21 + 1)E (1.3.5)
m=-—I
is spherically symmetric. The 2[ + 1 particles of the set nlm,m = —[,...,+I
are therefore said to form a closed subshell, with radial density

Dnl(r) = |Pnl(7n)|2- (136)

The spatial density is the same for both spin projections and this doubles the
total number in the subshell to 4] + 2 when spin is taken into account. The
arrangement of electrons in subshells is called a configuration. If the atom
has a configuration consisting only of closed subshells its electron distribution
is spherically symmetric and the electric field is purely radial. Most of the
electrons in a neutral atom in its ground state will belong to closed subshells,
making the central field model a good starting point for atomic physics.
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In the relativistic central field model, where the orbitals are 4-spinors of
the form (1.2.13), the subshells are defined by the 25+ 1 states nkm (or nljm)
with m = —j,—j 4+ 1,...,4j. The Dirac analogue of (1.3.4) is

Prrm (7)) dr = Dm(r)|A‘,{|’m(9,go)|2 dr df? (1.3.7)

where D, (r) is defined by (1.2.19), and the angular density is given in §3.2.5.
The subshell density is now given by

Z Prm (1) dr = Dy (r) dr. (25 + 1)% (1.3.8)

m=—j

A closed nonrelativistic nl subshell with 4] + 2 electrons has a density equiv-
alent to the sum of the densities of closed subshells nlj with j =1 —1/2 and
j =1+ 1/2 containing respectively 2/ and 2l + 2 electrons.

A more realistic atomic model is based on the Hamiltonian

N
H=> ti+Y 1/r; (1.3.9)
=1

1<j
so that we can write

H=Hy+V, V=> 1/ri; =Y U(r). (1.3.10)

i<j i

The eigenvalues of the zero-order Hamiltonian, Hy, depend only on the way
in which the electrons have been assigned to the central field orbitals. When
there are open shells, any of the (%!) determinants that can be formed
by selecting q,; different values of m from the set m = —I,..., 41 will give
energy Ey = (U] Hy |¥).. The full set of determinants ¥; so obtained span a
linear space; by diagonalizing H in this space we obtain a set of energy levels
E, = Ey + V,, where V, is an eigenvalue of the secular matrix V' whose
elements are

Vij = (@ V&), (1.3.11)

resolving the degeneracy, at least in part. There is in principle no reason
to restrict ourselves to a space consisting of determinants spanning a sin-
gle open subshell. The superposition of configuration (SOC) method employs
wavefunctions that are linear combinations of determinants belonging to more
than one configuration; the method is often said to be one of configuration
interaction (CI), reflecting the fact that configurational wavefunctions of the
same symmetry may have off-diagonal matrix elements in the Hamiltonian
matrix [3, 4, 48]

Things are actually slightly more complicated: we need to take other sym-
metries into account. Thus there can be no preferred spatial direction for an
isolated atom with no external interactions. The result is that the infinitesimal
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generators of spatial rotations, the operators L = >, 1; and § = . s; (or
J =), 7, in the relativistic case) commute with H. Thus eigenstates of the
nonrelativistic H can be classified as simultaneous eigenstates of H, L?* s°.
In some cases, the only remaining degeneracy will be with respect to the pro-
jections L, and S, so that just one member of the set serves to represent
them all. The theory of angular momentum in atomic structure and spectra
is described in detail in many well-known texts including [2, 3, 48, 49, 50, 51].
With the exception of [51] these texts all deal with the field from a nonrel-
ativistic viewpoint. Aspects of the theory of angular momentum required in
relativistic atomic structure theory are treated in Appendix B.3 and Chapter
6.

1.3.3 Mean field potentials

A simple mean field parametric potential has been used extensively, amongst
other things, for large-scale collisional-radiative calculations for highly ionized
atoms involving hundreds of levels and millions of cross sections for various
processes, [52, 53]. The radial charge distribution in nonrelativistic atom mod-
els has several peaks, one for each nl subshell; each peak can be modelled by
writing [53, Equation (5)]

p(r) = —4nr?gNr!T2e=or (1.3.12)

where ¢ is the number of electrons associated with this peak, & = (214-3) /{7 ),
where (7 ), is the mean radius of the peak and A is a normalizing constant.
It is simple to solve Poisson’s equation for this charge density, leading to a
mean field potential with parameters a = {1}

1
U(a,r) = {Z—N+1—|—Z qs 9(Lg, g, 1) (1.3.13)

T
+Z Qtf(lt,at,f)}

where s runs over the closed shells, t over the open shells, and N =" ¢, +
> 4+ is the total number of electrons. The radial functions are

- i\ (ary
f(l,oz,r):e_o”’z (1_21-1-2> -

i=1 J'

L=n—1
4142
g(L7OZ,7‘) = Z Wf(laa(l)7r)

=0

where a(®) takes account of the fact that the nl subshells have slightly dif-
ferent mean radii for different ! values. Thus f(I, a,r) is the radial potential
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due to an electron in the nl subshell at radius =, and g(L, a, ) is the radial
potential due to each of the 2n? electrons in the complete n shell summed
over the contributing nl subshells. Observable quantities are functions of the
parameters ag; they can be determined by, for example, minimizing the av-
erage configurational energy of the atom with resepct to these parameters or
by fitting a chosen set of atomic energy levels. [53]

Another ab initio mean field potential is provided by Thomas-Fermi (TF)
theory [2, §214] [48, §7.8]; this is based on a statistical model of the electron
distribution parametrized only by the values of the nuclear charge Z and
the number of atomic electrons N. The nonrelativistic SUPERSTRUCTURE
code [54, 55] constructs a mean field potential with a separately parametrized
TF potential for each subshell.

Model potentials are less expensive than fully ab initio self-consistent field
(SCF) models of the Hartree or Hartree-Fock type. The nonrelativistic wave-
function ¥ for a single closed shell configuration depends on the radial am-
plitudes P,;(r) used in its construction; the expectation value of the Hamil-
tonian (1.3.9) can be regarded as a functional E[P,,, P,,,...] so that stan-
dard methods of the calculus of variations can be used to derive nonlinear
integro-differential (SCF) equations for the radial amplitudes P,. This system
of equations must be solved iteratively: we start with a trial set of P,, from
which we calculate subshell potentials enabling us to solve for a new set of trial
orbitals. The cycle is repeated until the system is self-consistent. The method
can be elaborated to include Cl-type wavefunctions, and the resulting multi-
configuration Hartree-Fock (MCHF) method is now widely used [4, 56, 57].
The relativistic DHF equivalent was first proposed by Swirles [21].

1.3.4 Comparison of Hartree-Fock and Dirac-Hartree-Fock models
for ground states

The Periodic Table of the Elements, summarizing a huge body of information
on trends in the physical and chemical properties of the elements, a simplified
version of which appears in Figure 1.5, arranges the elements vertically in
groups that can be correlated with the electronic configurations of atomic
outer or wvalence shells (ns?,np?, nd?,... according to the subshell | values)
and in periods that reflect the principal quantum number n of the open shell
that is being filled as ¢ increases from left to right across the table. The
lanthanides and actinides, in which the filling of the 4f and 5f subshells spoil
this simple description, are shown at the bottom of the table.’

The mechanism of shell filling, Bohr’s Aufbau (or building up) principle,
involves constructing electron configurations for atomic ground states by as-
signing each electron to the orbital vacancy of lowest energy currently available

5 Seaborg [61] describes the evolution of the modern Periodic Table including ob-
served and predicted chemical properties of transactinide elements and possible
extensions of the table to include undiscovered elements up to atomic number
168.
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according to some central field model. The ordering, at least in the upper rows
of the table, follows the ordering in hydrogenic atoms:

181/2; 251/27 2]71/2, 2p3/2, 331/27 31?1/27 3]?3/2, 3d3/2, 3d5/2, cee

The Hartree-Fock (HF) and Dirac-Hartree-Fock (DHF) eigenvalues give a very
simple picture of the way in which this happens. Koopmans’ Theorem, §7.7,
interprets the energy eigenvalue of an HF or DHF orbital as the energy re-
quired to remove an electron from a subshell without allowing the remaining
electrons to relax. Whilst the neglect of relaxation and the details of inter-
action with the other electrons are needed for a fuller understanding of the
Aufbau process, the HF and DHF eigenvalues provide a remarkably simple
explanation of the main features. This can be seen from the extensive tables
of HF eigenvalues and orbital expectation values for LS-configuration aver-
age atomic ground states published by Froese Fischer [58] and Mann [59]
together with corresponding data for DHF average of configuration atomic
ground states published by Desclaux [60] at about the same time.
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Fig. 1.5. Simplified version of the Periodic Table of the Elements.
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Fig. 1.6. Comparison of atomic relativistic subshell binding energies —enx/E}
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lations [58, 59] for alkali atoms of Group 1. The electron configuration is [Core] ns,
where the core consists entirely of filled subshells. Binding energies increase down
the page on a logarithmic scale.
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Fig. 1.7. Koopmans’ theorem binding energies for alkaline earths, Group 2. The

electron configurations are [Core] ns®. The data are organized as in Figure 1.6.
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Fig. 1.9. Koopmans’ theorem binding energies for carbon Group 14. The electronic
configurations are [Core] ns?np?. The data are organized as in Fig. 1.6.
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Results for main groups of the Periodic Table are displayed in Figs. 1.6—
1.13. The ticks on the left-hand side of each vertical line in the diagram
indicate the DHF Koopmans’ ionization energy, whilst those on the right
are from the equivalent nonrelativistic HF calculation. The ground electronic
configurations of the alkali metals, Fig. 1.6, are [Core] ns: the valence subshell
has a single ns electron outside a closed shell core. In elements such as Cs,
the DHF eigenvalues of inner shells are below the HF eigenvalues, very much
as expected from the hydrogenic calculations: for example —e2 ¥ (a positive
number) is larger than —efif" ~ fsgpﬁf, whilst 752%‘;[/1; ~ —e4lF. Spin-orbit
splittings are substantial in the high-Z members of the sequence. However,
the valence ns electrons are progressively less tightly bound as n increases
although —ePHFE in Fr is greater than —e2H ¥ in Cs, in line with observed
trends in ionization energies (IE). Vertical distances in the logarithmic energy
scale are proportional to the ratio of two energies, and it is worth noting that
spin-orbit splittings and sometimes relativistic/nonrelativistic energy ratios
may be larger for valence and sub-valence electrons than for the innermost
shells, providing unequivocal evidence of the propagation of relativistic effects
across the atom. The trends in the alkaline earth elements, Figure 1.7, are
similar; the most notable new feature is the relativistic destabilization of the
4f5/2,7/2 and 5d3 /2 5 /2 subshells of Ra as a result of the more compact electron
distribution in the inner core subshells. In the boron Group 13, with electronic
configurations [Core] ns?np, the adjustments are still more complicated, with
the 4f5 /2 7/2 subshells of T1 lying between the 5s and 5p; /o subshells. We see
the same effect in the carbon Group 14 where the electronic configuration is
[Core] ns?np?.

The ordering of eigenvalues in DHF calculations gives some insight into
the electronic structure of neutral atom ground states, but gives no informa-
tion on the order in which shells fill in individual atoms. Some insight into
the interactions determining into which shell an additional electron is likely
to be placed can be obtained from the regularities of observed ionization en-
ergies [62] in conjunction with a heuristic model [63] employing a simplified
expression for the energy of the atom.

The flavour of this analysis can be appreciated from Fig. 1.14. As the
degree of ionization ¢ steps to the right, each straight line segment sloping
upwards to the right links points whose ordinates are the energies, I;, of
ionization of successive electrons from the corresponding atom. The transverse
lines link points at which neighbouring atoms of the group have similar valence
electronic configurations. Thus the ground configurations of the neutral atoms
N, P, As, Sb, Bi, ... have been assigned to [Core] 2p3, 3p3, 4p?, . ... We see that
successive ionization energies of np electrons down to the closed subshell core
increase in a roughly linear fashion: I; ~ il; for ¢ = 1,2, 3.
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Fig. 1.14. Observed successive ionization energies, I;/eV, against i for elements
of Group 15 and Group 1. Source: NIST on-line database [62].

1.3.5 The mechanism of shell filling

A simple model due to Pyper and Grant [63] readily explains this behaviour.
The first three ionization energies of nitrogen are

I, =14.5¢V, I, =29.6eV I =47.5¢V,

at which stage we are left with the C3* Be-like ion core in the 1522s% configu-
ration. The central field approximation assumes that the 2p orbital wavefunc-
tions is insensitive to the valence electron configuration, and we also assume
that every 2p electron has the same effective interaction energy, —C', with
the Be-like core. The first step in building up the valence 2p shell binds the
electron with an energy

—C = —I3 ~ —A75¢V. (1.3.14)

Our assumptions require the next electron to be bound to the core with energy
—C, but now its energy will be raised by an amount, +F', because of repulsion
by the first electron. Thus

—Ihr = —C+ F =~ 29.6eV. (1.3.15)
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Fig. 1.15. Observed successive ionization energies, I;/eV, against 4 for elements
of Group 2 (left) and Group 13 (right). Source: NIST on-line database [62].

The third and final electron is repelled by the first two electrons and so
—Iy = —C +2F =~ 14.5¢V. (1.3.16)

Thus F' ~ 15eV and C' =~ 45eV consistent with the observation that the
binding energy (or electron affinity) of an additional electron is very small.
(On this model it is given by Iy = —C' 4 3F = 0). The Pyper/Grant model
thus approximates the total energy of an [V configuration by a formula of the
form

1
Ey=-NC+ N(N - 1)F, (1.3.17)

where C' is the mean binding energy of an [ electron to the core and F is the
mean repulsion energy of a pair of [ electrons. Because

Ii=En_;— En_it1

the general formula [63, Equation (2.08)] is

i i
I = C+ (1N) Iy
=il —(i—1)1I (1.3.18)
~il. (1.3.19)
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Fig. 1.16. Observed successive ionization energies, I;/eV, against i for elements
of Group 5 (left) and Group 11 (right). Source: NIST on-line database [62].

As the remaining figures, 1.15-1.18 confirm, this linear dependence on the de-
gree of ionization is roughly fulfilled for ionization from s™, p™, d", and even f"
configurations in positive ions as well as neutral atoms.® Pyper and Grant [63]
studied successive ionization from s2 and p" configurations from several atoms
using theoretical single configuration DHF calculations. Table 1.1 shows re-
sults for the elements of Group 14, headed by carbon. The Pyper/Grant mod-
els (1.3.18) and (1.3.19) do better than one might have expected. The DHF
energy differences in the last column follow experimental trends but the values
are uniformly low; this is not surprising as the model takes no account of the
phenomenon of electron correlation.

The plots of successive ionization reveal cases in which filling of configura-
tions is somewhat irregular. Thus Group 5 neutral ground states are 3d34s>
in vanadium and 5d36s? in tantalum but 4d*5s in niobium, whilst the ions
V*, Nb* and Ta™ have the respective configurations 3d*, 4d* and 5d365s. The
lanthanides, Figure 1.18 are even more complicated, with most ground states
having the form [Xe]4f"6s?, whilst La has [Xe] 5d6s?, Ce has [Xe] 4f5d6s?,

5 Pyper and Grant [63] say that it fails for successive ionization from d™ and f"
configurations, but that assertion is not borne out by data of Fig. 1.18 that were
not available at the time.
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Fig. 1.17. Observed successive ionization energies, I;/eV, against i for elements
of Group 12 (left) and Group 3 (right). Source: NIST on-line database [62].

Gd has [Xe] 4f75d6s%. The lanthanide 5d shell fills smoothly as Z increases
once the 4f shell is complete at Yb. An extension of the simple Grant/Pyper
model to include more than one valence subshell, allowing for different orbital
properties of nds/, and nds/, subshells, for example, or (n — 1)d®ns™V % gives
some idea of the energy balance involved in alternative modes of filling. The
NIST database [62] shows that the more complicated configurations interact
quite strongly so that whilst such extensions of the simple Pyper/Grant model
may give some insight into the relative energies of different configurations, the
differences may be too small to order configurations with certainty.

1.3.6 Other approaches

The original heuristic paper on relativistic self-consistent fields [21] started
from the Dirac-Coulomb Hamiltonian (1.3.9). Z-expansion methods were sug-
gested in the 1960s to study astrophysically important spectra from ions with
only a small number of electrons. They rely on a formal double series expan-
sion, in the parameters A = Z~! and pu = o®?Z2, of the matrix elements of the
Dirac-Coulomb-Breit Hamiltonian (in which the Breit interaction (1.1.6) has
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Fig. 1.18. Observed successive ionization energies, I; /eV, against ¢ for Lanthanides.
Source: NIST on-line database [62].

been added to the DC Hamiltonian (1.3.9)) retaining only the lowest pow-
ers of p [64]-[69]. At this level of approximation, correlation is neglected, so
that it can only be applied to fine structure within a complex (that is to say
configurations built from different assignments within the same shell). Better
results are obtained by including nonrelativistic correlation terms of second
order [69]. A semi-empirical screening model has also been used to estimate
correlation corrections [66]-[68].
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Table 1.1. Successive ionization energies (V) in Group 14 (p® configurations)

Expt. (1.3.19) (1.3.18) AEpur

Carbon

I 11.26 1249 11.90 10.77
I, 2438 2497 2497  24.05

Silicon

I, 8.15 8.16 8.12 7.54
I 16.34 16.33 16.33  15.72

Germanium

I; 7.88 7.79 8.04 7.35
I> 1593 15.58 15.58  15.29

Tin
L 7.34 7.16 7.37 6.82
1> 14.63 14.31 14.31 14.00
Lead

I 741 7.31 7.07 6.79
I, 15.056 14.68 14.68 14.40

114

I - 8.48 8.24 8.03
1> - 1696 16.96 16.59

Direct application of QED perturbation theory [70] has been attempted
for a few systems.

1.4 Applications to atomic physics

The methods described later in this book have been used widely in atomic
physics to interpret experimental atomic spectra, to evaluate cross sections for
a range of continuum processes, and as an enabling technology for practical
applications. Atomic structure calculations estimate energy levels directly, but
the attainment of spectroscopic accuracy requires accurate modelling that
can never be straightforward. The calculation of spectral line widths is often
sensitive to the choice of electromagnetic gauge potentials; although gauge
sensitivity can be mitigated for strong electric dipole transitions, it remains
a challenge for forbidden lines and for intercombination lines, which also are
sensitive to the treatment of electron correlation. There are further challenges
in the treatment of continuum processes such as photo-ionization, radiative
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recombination, Auger transitions, and three-body recombination processes of
interest, for example, in plasma physics.

Traditional spectroscopy records the emission and absorption of radiation
by atoms in different spectral ranges, from which line positions and profiles
can be measured. Laser spectroscopy and the invention of devices such as the
electron beam ion trap (EBIT) [71], which can selectively produce and excite
particular stages of ionization, make it possible to produce very high quality
spectra demanding theoretical models with matching accuracy. Highly ionized
atoms of heavy metals such as tungsten are present in high-temperature lab-
oratory plasmas [72], and the modelling of their emission spectra requires a
range of data on radiative transitions, Auger and Coster-Kronig transitions,
and electron collisions. Laser interactions with matter and observations of as-
trophysical plasmas involving ions of all but the lightest atoms also benefit
from calculations based on relativistic quantum theory.

Line positions, energy levels, and line widths are quantities that can be
estimated fairly straightforwardly for atomic ions using a variety of ab initio
schemes such as MCDHF'. Neutral atoms and negative ions are generally more
demanding than positive ions. The relative dominance of the electron-nucleus
interaction in highly ionized atoms often makes a central field model a sur-
prisingly good starting point. In this case, SOC wavefunctions built from a
relatively small number of configurational states (CSF) can give excellent re-
sults. The power and memory of modern computers now permit calculations
with wavefunctions containing several hundred thousand CSFs. Such time-
consuming calculations are still uncommon, and they require computational
technology that is still being developed.

1.4.1 X-ray spectra

A combination of relativistic atomic structure theory with critically evalu-
ated experimental data provides the ingredients of a comprehensive tabula-
tion of K-shell and L-shell X-ray transition and absorption edge energies for
all the elements from neon to fermium and illustrates the use of many of
the methods described in this book. The motivations for this ambitious 20-
year programme coordinated by the US National Institute of Standards and
Technology (NIST) [73] included the need to improve on prior compilations of
X-ray data, to combine data from X-ray and optical interferometry to provide
an accurate linkage of crystal spacings to optical wavelengths and to the SI
definition of length, and also to provide reference lines for specific applications
in X-ray crystallography.

The first step in the calculation of X-ray energies [73] is a Dirac-Hartree-
Fock calculation for inner shell hole states. It is usually sufficient for this to
use an average of configuration procedure that ignores open shell effects.
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Fig. 1.19. The histogram records portions of the X-ray emission from solar flares
taken on 30 April 1980 (4 minutes duration) and 5 November 1980 (about 1.5
minutes duration). The calculated spectrum (dashed line), comprising lines from
Fe XXII — XXV spectra, is a fit for the single indicated temperatures. Reprinted,
with permission, from [77].

Treatment of the magnetic part of the electron-electron interaction on the
same footing as the Coulomb interaction in the DHF calculation accounts for
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higher order effects on the wavefunction. Good nuclear charge models includ-
ing, where necessary, nonspherical effects in heavy nuclei, model finite nuclear
size effects. Relaxation of spectator electrons can be handled by treating initial
and final states independently. Electron correlation, which plays a significant
role, can be modelled using relativistic many-body theory (RMBPT). Ad-
mixtures of configurations with two holes and a particle with the dominant
hole states, producing so-called Auger corrections, can also be important.
One-electron radiative corrections due to the electron self-energy and vacuum
polarization scale roughly as Z*/n?, where n is the principal quantum num-
ber; radiative corrections to the electron-electron interaction scale roughly as
Z3/n3. The X-ray database is available on-line [74].

1.4.2 Applications to astrophysics and plasma physics

The extreme ultraviolet (EUV) part of the solar spectrum exhibits spectra
from multiply charged ions of the iron group [75]. Many previously unidentified
lines have been classified from beam-foil measurements. However, theoretical
predictions of oscillator strengths (proportional to radiative transition proba-
bilities) and lifetimes for long-lived levels can be useful because most labora-
tory light sources yielding precise wavelength measurements do not allow mea-
surement of lifetimes of excited levels. A series of MCDHF calculations [76] of
level energies, transition probabilities and lfetimes of several phosphorus-like
ions of the iron group (22 < Z < 32) in the 3s3p* and 3523p?4d configurations
was made after long-lived lines of phosphorus-, sulphur-, and chlorine-like ions
were observed in beam-foil experiments [80]. The small probabilities of these
long-lived intercombination lines are often difficult to predict accurately.

The methods of Chapter 8 underpin packages such as the GRASP92 rela-
tivistic atomic structure program [81]. The technology enables calculations of
electron correlation with multiconfigurational SOC wavefunctions using CI,
self-consistent fields or, in principle, MBPT methods. The configuration state
functions (CSF), labelled by vyIIJM, are built from anti-symmetrized prod-
ucts of Dirac central field orbitals of the form (1.2.13). Here J, M are the
quantum numbers of the coupled angular momenta of the electrons, IT is the
parity, and - denotes other data such as the configurational composition and
the angular momentum coupling scheme, which are needed to identify the
state. Atomic state functions (ASF) are linear combinations of n. CSF of the
same symmetry,

I JM) = ECT(Q)\%H.}M} (1.4.1)

The atomic energy levels are approximated by the eigenvalues E, 7 of the
atomic Hamiltonian in the CSF basis and the ASFs are defined by the corre-
sponding vector ¢(a) of the coefficients of (1.4.1).

The phosphorous-like ions studied in [76] have five electrons in open shells
outside a Ne-like closed shell core. An MCDHF calculation based on an aver-
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age energy expression for the ground 3s23p> and excited 3s3p* and 3s23p?4d
configurations generated the set of spectroscopic orbitals. Further MCDHF
calculations in which the spectroscopic orbitals are frozen gave additional
correlation orbitals. Together these constituted a common orthonormal or-
bital set from which all levels and radiative transition rates could be calcu-
lated. These are substantial calculations: 2,365 CSF's were needed to represent
3523p? states at the 41 level and 7,917 CSFs at the 5/ level whilst the J = 5/2
excited states needed a maximum of 3,698 at the 4l level and 16,633 at the
51 level. [76, Table A]. These calculations differ from those performed for the
X-ray project in several ways. The MCDHF method was used to determine
all orbitals and the fully retarded magnetic interaction was treated as a per-
turbation. QED corrections were ignored, The correlated wavefunctions were
derived by using CI rather than RMBPT methods.

A disadvantage of this procedure is that the weaker transition rates are
often far from gauge invariant. The results usually improve with systematic
enlargement of the CSF set, but convergence is often slow. Evidence suggests
that SOC wavefunctions converge better when the orbitals are optimized sep-
arately for each state. When this is done, the radiative transition calculation
must allow for the use of different orbital sets for the initial and final states
of each transition: see §8.4 and §8.5. This generally reduces the gauge depen-
dence of the transition rates, but the cost may make state specific optimization
impractical when information is needed for many atomic states.

1.4.3 Modelling atomic processes in plasmas

The modelling of atomic processes in high-temperature plasmas which are
not in thermodynamic equilibrium (non-LTE) requires extensive data on ionic
level populations, spectral line intensities, and cross sections for electron-ion
collisions. Highly charged ions of heavy atoms are often found in fusion plas-
mas and X-ray laser experiments, as well as in ion traps, so that relativistic
methods are essential and systems such as the HULLAC package [53] have
been developed specifically for this purpose. Its treatment of electronic struc-
ture and the calculation of collisional and radiative rates is founded upon
methods such as we discuss in this book; however much of the package is
concerned with shortcut methods to handle the huge amount of atomic data
that is typically needed in applications.

The X-ray emission spectra from solar flares recorded by NASA’s Solar
Maximum Mission (SMM) spacecraft in 1980 that contained strong lines of
the Fe XXII-XXV spectra [77] provide a contrasting example of successful
application of MCDHF-EAL calculations with a minimal CSF set. Fig. 1.19
compares two synthetic spectra (dashed curves) with spectra recorded by
the SMM’s bent crystal spectrometer (histograms). The line positions and
radiative transition rates for the He-like (Fe XXV) and Li-like (Fe XXIV)
ions were taken from MCDHF calculations [78, 79]. The w resonance line

(1s* 1Sy — 1s2p 1 P?) in the He-like Fe XXV spectrum at 1.8509 A is from a
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7 CSF calculation [79]. The lines labelled j,q are from 57 CSF calculations

of the Li-like Fe XXIV satellite lines, respectively 1522p ZPP?/Q —1s2p? 2Dy5 5

at 1.8666 A and 1522s 2S1/5 — 1s2p2s (1 P)*Py )y at 1.8617 A [79]. The in-
tensity ratio j/w was used for a first estimate of electron temperature, T,
in the plasma which was later improved using a x? test of the fit of the cal-
culated spectrum to the observed spectrum in the neighbourhood of the two
lines [77]. The (3 line is from the Fe XXIII spectrum. The observed spec-
trum contains overlapping lines from different ionization stages. The model
used data acquired from a number of different theoretical atomic calculations;
in particular radiative and autoionization rates for dielectronic excitation of
n = 2 and n = 3 satellites in Fe XXIV and Fe XXIII were calculated using the
RCN and RCG codes [48, Chapters 8, 16]. The RCN code generated orbital
wavefunctions using a Hartree-Fock-Slater (HFS) scheme with a statistical
model exchange potential whilst RCG calculated energy levels and transi-
tion rates in intermediate coupling using standard Slater-Condon methods in
a single-configuration approximation ignoring spin-spin interactions, Zeeman
and Stark effects. Each line is distributed over a wavelength interval according
to a Voigt profile, (a convolution of Lorentzian component and Gaussian com-
ponents). The Gaussian component represented Doppler broadening by ionic
motion assuming some ion temperature Tj,, roughly independent of T, [77,

§3].

1.5 Relativistic molecular structure

The use of relativistic methods to study the electronic structure of molecules
and solids has expanded rapidly in recent years as shown by Pyykkd’s se-
ries of bibliographies [82, 83, 84, 85|, which now list some 12,700 papers on
relativistic effects on atoms, molecules, and condensed matter and their chem-
ical implications. The chemistry of compounds containing heavy elements has
motivated calculations on: molecular geometry — bond lengths, bond angles
and potential energy surfaces; electromagnetic properties — g-tensors, electric
dipole moments, NMR shifts, and hyperfine interactions; and effects on chem-
ical reactions. Much of this information has been obtained using methods that
treat relativity approximately rather than from the more fundamental theo-
retical standpoint of this book. The calculations listed for the years 1993-99
in [85, Table 7.10] for compounds of elements ranging from hydrogen to the su-
perheavy element 118 are dominated by calculations with relativistic effective
core potentials (RECP); other methods are comparatively unusual. Although
there is no reliable way to estimate the errors of these approximate methods,
which make assumptions for which there can be no rigorous justification, they
have still provided extensive and valuable insights into relativistic effects in
quantum chemistry.



46 1 Relativity in atomic and molecular physics

1.5.1 Relativistic interpretations of chemical anomalies

Pyykko and Desclaux [86] asserted in 1979 that relativistic effects “...seem
to explain some of the most conspicuous anomalies in the latter half of the
periodic system.” This review, along with other articles by Pitzer [87] and
Pyykko [88], has strongly influenced later research on relativistic effects in
chemistry, especially in relation to heavy and superheavy elements. As al-
ways, relativistic effects on hydrogenic (§1.2) and many-electron atoms (§1.3)
provide the starting point for investigation of the molecules of which they
form part. The evidence cited in [86] was based on Dirac-Fock one-centre
expansion (DF-OCE) calculations [89], supplemented by calculations using
the local density discrete variational method (DVM) [90], the multiple scat-
tering Dirac-Slater (MS-Xa) method [91], methods using relativistic effective
core potentials (RECP) and relativistic extended Hiickel (REX) models [92].”
Pyykko and Desclaux highlighted specific properties such as the yellow colour
of gold and why it is so different from silver; why mercury is a liquid and has
a strong tendency to two-coordination; and why, in Group 13, the valency
changes from III for indium to I for thallium or in Group 14 from IV for tin
to II for lead. Pitzer’s article [87], published in the same issue of Accounts
of Chemical Research also highlighted some of these questions as well as the
mechanism of lanthanide contraction; the unique properties of gold compared
with copper and silver and of UV, Np¥!, and Pu"! as compared with the
corresponding lanthanides and noted magnetic effects attributed to the large
spin-orbit interaction in compounds of Os’V and other substances.

The DHF calculations of [47] emphasized that the radial contraction of s
and p; /o orbitals in many-electron atoms is mainly a relativistic dynamical
effect whilst indirect effects generally cause orbitals of higher angular mo-
mentum, ps/s, d3/2,ds /2, - - - to expand. The height of the angular momentum
barrier increases with j, reducing the orbital electron density near the nucleus;
the electron therefore spends less time in the high potential region in which
it moves with relativistic speeds, reducing the dynamical relativistic contrac-
tion. The direct effect is thus more than counterbalanced by indirect effects
for d, f, ... orbitals: these are partly mutual adjustments in the electronic re-
pulsion between shells and partly the effect of the increased screening of the
nucleus by the more compact s and p orbitals. Clearly, the observed shell
structure of individual atoms reflects a delicate and subtle balance between
the direct and indirect effects of relativity. Relativistic adjustments propagate
outwards through the electron shells to modify the wavefunctions of valence
electrons, so affecting their bonding with electrons on neighbouring atoms.
Pyykko [88] built up a database that combined results of relativistic and non-
relativistic calculations with experimental data for a range of small molecules
to illustrate the effect of relativity on various properties. For example, rela-
tivistic bond lengths are usually less than nonrelativistic bond lengths [88,
Table IV]; attempts to explain these findings in simpler terms vary according

" Reference [88] has an extensive bibliography.
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to the theoretical model from which the results were derived [88, §II.D]. The
bond contractions, C, for Hj and Group 11, 13, and 14 hydrides had originally
been fitted to a formula C' = czZ2, but the more comprehensive data of [88,
Table IV] revealed that the “constant” cyz varies substantially from group to
group, with the smallest values in Groups 1 and 18 and a “gold maximum”
for the coinage metals in Group 11.

As discussed in §1.3.4 and §1.3.5, the relativistic contraction of s and p; /5
orbitals is accompanied by an increase in their IP whilst orbitals of higher an-
gular momenta exhibit the opposite behaviour. Many physical and chemical
properties have a saw-tooth behaviour, secondary periodicity, superimposed
on the regular trend down the column of each group in the Periodic Table.
Thus, in Group 15, N, As, and Bi are preferentially trivalent, whilst P and
Sb are pentavalent. The outer shell configurations are respectively 2522p3,
3d'04s24p3, 4f145d'06526p3, 3523p3, and 4d'°5s525p3. The explanation sug-
gested [88, p. 566] is that the anomalous trivalency of As in the fourth row
arises from “an increase in the effective nuclear charge” seen by the 4s shell
due to the filling of the 3d shell. HF and DHF calculations on a pseudo-atom
with nuclear charge reduced by 10 and omitting the 10 electrons of the 3d
shell were used to support this conjecture. In the case of Bi, the “lanthanoid
contraction” associated with the filling of the 4f shell and the direct rela-
tivistic 6s stabilization contributed almost equally. A similar explanation was
advanced for the “inert pair effect”, namely the tendency of the 652 pair to re-
main formally unoxidized in compounds of TI(I), Pb(II), and Bi(IIT). The HF
and DHF atomic eigenvalues, although not directly applicable to molecules or
bulk matter, suggest that atomic relativistic effects account for many of the
experimental facts.

The different colours of silver and gold provide perhaps the most notorious
phenomenon in which relativistic effects have been implicated [88, p. 583]. The
observed reflectivity of gold is high for photon energies less than about 2.4
eV, in the middle of the visible light spectrum but drops abruptly at higher
energies. This is attributed [93] to the onset of absorption by electrons in the 5d
band due to excitation to the Fermi level (essentially 6s in character). This is
consistent with a calculated relativistic interband gap of 2.38 eV, whereas the
nonrelativistic estimate would have been much higher, pushing the absorption
edge to higher photon energy in the ultraviolet. Silver, in the previous row
of the Periodic Table, has a smaller relativistic rise in the 4d energy and
a smaller reduction of the 5s energy, shown qualitatively by the DHF and
HF eigenvalues of Fig. 1.12 and resulting in a relativistic absorption edge at
around 3.7 eV in the ultraviolet. Thus “nonrelativistic gold” should appear
white like silver, a conclusion supported by band structure calculations [88,
References 359 b-k]. It seems reasonable to assign much of the difference in
properties of the two coinage metals to relativistic mechanisms. Pyykko [88]
discusses similar examples in other groups of the Periodic Table.
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1.5.2 Relativistic effective core potentials and other
approximations

Effective core potentials (ECP) were first suggested about 70 years ago by
Hellmann and Gombds [94, 95]. The valence electrons of an atom determine,
at least qualitatively, its chemical behaviour so that a model treating only
valence electrons moving in the field of a suitable ECP may be good enough
to reproduce the same chemical behaviour as more eleborate models. This
chemically intuitive approach reduces the size of the computation, enabling
more effort to be put into the parts of the calculation that are of most in-
terest to chemists. Because relativistic effects originate in the strong field
region near the origin, the hope is that RECPs account for much of the rel-
ativistic effects due to the core, and that it is only necessary to treat the
valence electrons nonrelativistically. Thus standard nonrelativistic codes can
often be used with only minor modifications. Modern RECPs contain several
approximations that can often be justified only empirically and that must be
calibrated against more exact models. Dolg has comprehensively reviewed the
theory of RECPs [32]; see also Balasubramanian [96].

The basic nonrelativistic valence-only ECP model has the form [32, eq.

(23)]

Ny Ny
Ho = (i) + > g0(i,5) + Vee + Vepp- (1.5.1)
i i<j
Subscripts ¢, v stand for core and valence, respectively; h,, g,, for effective one-
and two-electron operators; V.. for the repulsion between all cores and nuclei
of the system; and V,, is a core polarization potential (CPP). The number
of valence electrons treated explicitly is given by n, = n — Zf\V(Z A — Qn),
where Z, is the nuclear charge on centre A\ and @) is the net charge of the
associated core.
There are many possible choices for each of these operators [32, 96]. A pop-
ular scheme for constructing model potentials requires fitting a parametrized
expression to the Fock operator F, of a valence orbital o) :

ZN A Zx — Qx . .
Avcv(r)\i) ~ = g + E (QJC(Z) - KC(Z)) (152)
A v c

In the AIMP (ab initio model potential) scheme described in [32, §4.3], the
right-hand side comes from an all-electron quasi-relativistic atomic HF calcu-
lation. The direct part is the more straightforward:

75— Qx N a1 \ N
- 2J.(1) = Y AV () = — —adrd) (L5
" +§; Tl 2 Vo) =25 ) Crexpl—oirk) - (153)

The parameters ag and C’,i‘ are determined from a least-squares fit to the left-
hand side subject to the constraint ), C,i‘ = Z) — Q. The nonlocal exchange
terms are approximated in terms of a suitable basis set {X;);‘} on core \ as
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— ST K(i) ~ AVR() Zup )l (15.4)

With these definitions, the core-like solutions of the valence Fock equation
would still fall below the desired valence-like solutions. This has to be pre-
vented by adding a shift operator

i) =) D2 e (i) {02 (i) (1.5.5)

CcEX

where the set ¢ is localized on core A must be represented by a sufficiently
large basis set. It is common to set D} = —2¢), largely on grounds of conve-
nience. Thus the construction of the model potential

AV 40 (1) = AV (i) + AVR (i) + P (i)

has not used any properties of the valence orbitals or their energies.

We now turn to the choice of one-electron operator h,. The Dirac oper-
ator itself is usually rejected, partly because it requires new machinery to
deal with Dirac 4-spinors, partly because of worries about the issues of vari-
ational collapse, continuum dissolution, and finite basis set disease discussed
elsewhere in this book. The Douglas-Kroll transformation [33] as implemented
by Hess [34] gives a quasi-relativistic one-electron Hamiltonian [32, §3.2]

hpku(i) = E; — A [V (i) + RiV (i) Ri] A; (1.5.6)
— WA EWAG) - (W), Bi}

where

E; = E(p;) = c\/p? + 2,
A; EA(pl) VI(E;+¢ )/QEZ,

and W1 (4) is an integral operator with the momentum space kernel

Wi(p,p") = A(p) [R(p) — R(p")] A(®") V(p,p')/(E(p) + E(p)),

in which V(p,p’) is the kernel of the external potential V(i) and {...} rep-
resents an anticommutator. The Coulomb interaction g(i,j) = 1/r;; is usu-
ally used unmodified; the changes made by replacing it by the transformed
two-electron operator are usually not enough to justify the additional cost
of calculating it. The model potential approach yields valence orbitals with
the same nodal structure as all-electron orbitals, and the DKH Hamiltonian
can therefore be used to approximate relativistic effects in the valence shell
explicitly. The family of regular approximation Hamiltonians [36] in which
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ZORA (the zero order regular approximation) closely resembles the DKH op-
erator (1.5.7) has also been used in molecular calculations. A popular alterna-
tive to the DKH operator has been the Wood-Boring (WB) Hamiltonian [32,
§3.3] [97], originally proposed for atomic self-consistent DFT calculations fol-
lowing Cowan [48, §7-14] and Cowan and Griffin [98](CG). In the WB form
(there are minor technical differences with the CG Hamiltonian) the starting
point is the elimination, in a manner similar to §3.7.1, of the lower pair of
components from the Dirac one-electron equation giving the two-component
energy dependent Hamiltonian operator

lcri p; [1+ (B = V(i)/2¢%] o; - p; + Z W(rirn).  (1.5.7)

hWB(Z) =
2 A

In the central field approximation, this gives a radial wave equation for the
large component

(HS + HMV + 7'lD + HSO) an(’r) = 5nnPnn(r> (158)
where
1d*> I(1+1)
HS = _§ﬁ + 27’2 + V(T)
o? 9
Huy = —7[5m —V(r)]
a? dV d 1
Ao == gy B (d B )
o dV k+1
Hso = B T

with B,,, = [1 +a?(epk — V(T))/Q} ~! The nonrelativistic Schrodinger Hamil-
tonian is denoted by Hg, H v is the mass-velocity operator, Hp the Darwin
operator, and Hgo the spin-orbit interaction. Usually the nonlocal HF poten-
tial is used in Hg, and a local approximation to it in the remaining relativistic
correction operators. Averaging over the two cases kK = —I — 1, +[ gives a so-
called scalar-relativistic equation.

The model potential scheme should, in principle, give the same valence
wavefunctions as an all-electron calculation. The problem is that this requires
compact basis functions to reproduce the right nodal structure in the core
region of the atom. These are generally not needed for chemical bonding, and
pseudo-potential approaches generate pseudo-valence orbitals with simplified
nodal structure rendering the compact basis functions unnecessary. Shape-
consistent pseudopotentials are derived by replacing valence orbitals ¢, ;;(r)
by pseudo-orbitals ¢, ;;(r) such that

© l’(r) — 9011,lj(7’) for r > T,
o fii (1) for r < re,



1.5 Relativistic molecular structure 51

where the nodeless polynomial fj;(r) is defined on [0,7.) to satisfy suitable
continuity conditions at the core-boundary radius 7. as well as at the origin.
The pseudo-potential V¥ (7) is then evaluated pointwise so that the pseudo-
orbital satisfies a pseudo-Fock equation with the correct eigenvalue €, ;. It is
usually fitted to an expansion of the form

V= _% + D0 | D Apar™ T exp(—anur®) | Py
TR

where Py; projects onto orbitals of Ij symmetry. Energy-consistent pseudopo-
tentials have also been proposed for which the free parameters are chosen to
reproduce the relevant parts of the experimental atomic spectrum [32, §4.4].

1.5.3 Dirac four-component methods for molecules

The calculation of molecular structures is much more demanding than that
of atomic structures, and relativistic effects exacerbate the difficulties. Whilst
four-component calculations of atomic structure are now common, there have
been very few such calculations for molecules. This has been partly due to wor-
ries, now dispelled, about the validity of four-component methods, and partly
because of the relatively high computational cost. Calculations of electron
repulsion integrals (ERI) for four-component wavefunctions are the biggest
bottleneck. The earlier codes treated each component of the 4-spinor as if
it were a nonrelativistic wavefunction in its own right suggesting that, if all
symmetry is ignored, each relativistic ERI is a linear combination of up to 4*
nonrelativistic ERI! This simplistic argument grossly overestimates both the
memory and effort required whilst making it clear that it is necessary also to
find ways to reduce relativistic computational overheads without compromis-
ing the accuracy of the model.

The most developed four-component machinery available for molecules in-
cludes the DIRAC [99, 100] and MOLFDIR systems [101], both of which are
based on older nonrelativistic molecular structure packages. The codes devel-
oped by Hirao et al. [102, 103, 104] work with spherical Gaussian functions
(SGTF) and exploit the ERI code SPHERICA [105], which uses generalized
contraction ideas of Raffenetti [106] and coordinate expansion schemes due
to Ishida [107], to make relativistic ERI generation more efficient. Grant and
Quiney’s BERTHA code [108], described in detail in Chapters 10 and 11, is
based on a new ERI algorithm that is a relativistic generalization of the pop-
ular nonrelativistic McMurchie-Davidson algorithm [109]. BERTHA is based
on G-spinor basis functions, §5.10, and achieves its efficiency by exploiting the
internal symmetry relations between the four SGTF components of each G-
spinor. In the nonrelativistic case, overlaps of GTF basis functions on different
nuclear centres can be expressed as a linear combination of products of Her-
mite Gaussian functions (HGTF) with numerical coefficients which depend
on the nuclear positions. The relativistic charge density and current density
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vector of Dirac theory can be written in much the same way in terms of G-
spinor overlaps; the coefficients of their HGTF expansions then incorporate
the spinor structure along with the nuclear geometry [110]. The result is that
calculation of the Fock matrix for the Dirac-Coulomb operator, which requires
only the charge density overlaps, has relatively small relativistic overheads.
The current density vector, which is only required for the magnetic (or Breit)
interaction part, is also relatively economical to construct.

Much use has been made of density functional theory (DFT) in quantum
chemistry owing to its computational simplicity. Some methodological papers
on relativistic DFT, surveyed in §4.15, have been applied mainly to atoms
rather than to molecules. BERTHA has DFT modules [111] which are being
developed [112, 113] to exploit both computer parallelism and other techniques
for higher speed and accuracy. As with older codes, BERTHA has only been
applied to relatively small molecules and atomic clusters, but this can be
expected to change in the course of the next few years.

Most four-component electronic structure calculations so far have been
for diatomic or polyatomic molecules with at most one heavy atom [85, Ta-
ble 7.10]. The recent introduction [111] of DFT modules into BERTHA was
tested with DHF/DFT calculations on small molecules like HoO, NHs, Py,
CyHy, CHy, SiHy, and TiCly. Near optimal parallelization strategies [112]
implemented on a Beowulf workstation cluster with up to seven machines re-
duced the time of one SCF iteration for the HgF5 molecule by a factor of four.
Significant increases in speed can result from employing techniques such as
fitting the electron density to an expansion in terms of a modest set of scalar
basis functions. Calculations on closed shell gold clusters [113] show this scales
like O(N?), reducing the computing time for the Coulomb matrix to under
3% of the normal value for Aup and under 1% for AuZ . Developments of this
sort will greatly extend the range of problems that can be studied with four
component methods.

The DHF and DHFB models give corrections to quantities of chemical
interest such as bond lengths and bond energies, and nonrelativistic meth-
ods can be used straightforwardly to incorporate correlation corrections using
perturbation theory [114, 115]. The DHF model can be made the starting
point of a consistent relativistic many-body theory in which either relativistic
many-body theory (RMBPT) or relativistic configuration interaction (RCI)
methods are applied to molecular properties using spinor basis sets. Appli-
cations include magnetic properties [116, 117], molecular Auger effects [118],
and bonding of compounds containing superheavy elements [119, 120].

1.5.4 Parity violation and hyperfine interactions

Relativistic atomic and molecular structure theory is also important for fun-
damental investigations into the forces of nature. Suggestions for studying
parity-violating interactions by Purcell and Ramsey [121] were followed by
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the discovery, by Wu et al. [122] and Lee and Yang [123], of P-odd pro-
cesses in nuclear (-decay. The (V — A) theory of 3-decay of Feynman and
Gell-Mann [124] was followed by development of the theory of electroweak
interactions [125, 126, 127], which gives a complete and renormalizable model
of the P-odd interactions. This theory predicts an interaction of the electron
with the weak neutral currents within the nucleus whose magnitude, scaling
like Z3, is determined by the Fermi constant, Gz = 2.2 10~'4 a.u. Physical
consequences include optical rotation of polarized light transmitted by atomic
vapours, energy differences between enantiomeric forms of chiral molecules,
and nonvanishing probabilities for transitions that would otherwise be strictly
forbidden [128]. Elaborate RMBPT calculations [129] of the electronic struc-
ture of atomic Cs taking P-odd effects into account combined with precision
measurement of the tiny induced transition rates provided convincing evi-
dence for the internal consistency of the electroweak theory and verified that
the signal is proportional to the so-called weak charge of the nucleus. The de-
tection of a nuclear anapole moment, due to a nuclear spin-dependent P-odd
interaction, has provided further supporting evidence [130].

Only one example of a T-odd interaction, the decay of the neutral K°-
meson, is known. The standard electroweak model does not include such in-
teractions and several particle physics theories have been proposed to account
for it [131]. Several of these theories also propose PT-odd interactions, which
would have an experimental signature attributing a non-zero electric dipole
moment (edm) to the electron or to nucleons [132]. Sandars [133] was the first
to recognize that such weak spin-dependent interactions would be enhanced
by the strong internal electric field within polar molecules by mixing spin-
rotational states that are nearby in energy but that have opposite parity. A
high atomic number is needed for the necessary strong electric field, so that
a relativistic treament of the molecule is essential [134].

PT-odd effects in the ground state, 23 /2, of the paramagnetic radical
YDbF have been investigated by various methods [135, 136] in order to set lim-
its on any permanent EDM of the electron. The electronic matrix elements
closely resemble those of the M1 hyperfine interaction of '"'Yb in YbF, so
that predictions of the hyperfine interaction constant have been used to as-
sess the reliability of the electronic PT-odd calculations. Similar calculations
have been made for nuclear PT-odd effects in the TIF molecule [137], with
the aim of setting limits on the EDM of the proton. The four component
DHF calculations are demanding; large basis sets are needed: for example,
31s31p15d8f3g in the case of TI. Highly contracted basis elements are essen-
tial to get reliable wavefunctions near the (suitably modelled) nucleus whilst
long range functions are needed to model molecular bonding accurately.

There has been relatively little work on parity-violating energy differences
between enantiomers of chiral molecules. It has been suggested that differences
in the vibrational spectra of two enantiomers of handed molecues might be
detectable. A study by Leerdahl et al. [138] found the biggest such differences,
about 0.2 Hz, in chiral methane derivatives including an iodine substituent.
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In the case of CHBrCIF, the difference for the C-Cl stretching mode is only 7
mHz, whilst for the C-F stretching mode it is only 2 mHz, some 3 to 4 orders
of magnitude smaller than could be measured in recent experiments.

1.5.5 High-precision spectroscopy of small molecules containing
light elements

Although it is natural to think of relativistic methods as being essential for
studying matter containing the heavier elements, some of the more striking
recent results have come from applications to molecules containing only light
elements. Calculations usually start from the Born-Oppenheimer approxima-
tion [139] in which the electrons move relative to a static nuclear skeleton.
A sequence of such calculations in which the skeleton is deformed gives a
potential energy hypersurface (PES) that can be used to determine the slow
nuclear motions adiabatically. The precision of nonrelativistic calculations of
the vibration-rotation spectra of light molecules is now so good that small
corrections to the Born-Oppenheimer (BO) PES must be considered: these
include adiabatic and nonadiabatic BO corrections and relativistic effects. A
recent review [140] compared perturbation estimates of the relativistic mass-
velocity and the Darwin one- and two-body corrections together with in small
molecules with the corrections obtained from four-component calculations us-
ing BERTHA and MOLFDIR together with estimates of one-body and two-
body Lamb shifts. BERTHA calculation [141] suggested that the two-electron
relativistic contributions have a substantial effect on the rotation-vibration
levels in H2O, and similar results were obtained for HaS [142]. The emis-
sion and absorption of light by water vapour is responsible for about 70%
of the absorption of sunlight in the Earth’s atmosphere and the majority of
the greenhouse effect [31]. Water is a major product of combustion and a
dominant constituent of the atmospheres of cool stars. Hence much effort has
been devoted to constructing as complete and accurate a model as possible
to predict the high-resolution water spectrum. Polyansky et al.’s study [31]
stressed that inclusion of relativistic and other corrections had improved the
accuracy of the ab initio PES of water by an order of magnitude compared
with previous work, predicting individual line positions with a typical accu-
racy of 0.2 cm™'. This somewhat unexpected conclusion suggests that there
is continued scope for relativistic calculations on molecules with light element
constituents, although the need to study molecules containing heavy atoms
remains a major factor motivating development of relativistic methods.
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Part 11

Foundations



2

Relativistic wave equations for free particles

The topics presented in this chapter are indispensible foundations for the rel-
ativistic theory of atomic and molecular structure that are often taken for
granted by those whose main interest is in application of the theory. Section
2.1 gives a very brief account of the principles of the special theory of rela-
tivity that are applied throughout the book. The physical content of §2.2, the
Lorentz group, and §2.3, the Poincaré group, unifies the three sections on the
Klein-Gordon equation (for spin zero particles), the Dirac equation (for spin
1/2), and the Maxwell equations (for photons) that follow. Although §2.4-§2.6
can be read and largely understood without first reading the material on the
Lorentz and Poincaré groups, the reader is likely to find that he will need it
for a full understanding of the properties of these relativistic wave equations.
Similarly, the reader may wish initially to accept unread much of the content
of the two sections, §2.7 and §2.8, on local and global conservation laws as
consequences of the precious sections. The final section §2.9 sets up machinery
that will later become very familiar as we develop quantum electrodynamics
(QED) and the formalism of relativistic atomic and molecular structure.

2.1 The special theory of relativity

The special theory of relativity [1, 2] is fundamental to our treatment of
atomic and molecular structure. In flat space-time, contravariant vectors are
written
ot = (20, 2t 22, 2%) = (2, %)

with 20 = ct being the time-like component of the 4-vector and ¢ the speed of
light, so that z° has the dimension of length, putting it on the same footing as
the other components . We use a boldface letter, « to denote a 3-vector whose
components are the three space-like components of a contravariant 4-vector:

T = (‘T17m2?x3) = (:L‘, y?'Z)‘
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We suppose that each freely moving particle, or free particle, is equipped
notionally with some form of standard clock which measures time 7 along the
particle’s space-time trajectory, its worldline, given by some equations of the
form

at =at(r), wu=0,1,2,3. (2.1.1)

Each event in the particle’s history is therefore characterized by some value
of 7. The concept of an inertial observer, who can move in the same way as a
free particle, is convenient for setting down the principles of special relativity,
namely

e Free particles and photons appear to inertial observers to travel in straight
lines at constant speeds.

e Photons appear to inertial observers all to have the same constant speed,
denoted by c.

e FEach inertial observer’s standard clock, from which he obtains the value of
T, appears to any other inertial observer to run at a constant rate. However
the clocks of different observers do not necessarily run at the same rate.

e Free particles cannot travel faster than photons.

Thus photons are pictured in a similar fashion to free particles apart from their
constant speed in the inertial frame associated with each inertial observer. To
these assumptions we add the Principle of Relativity, which states that only
relative motion of inertial observers is detectable.

Thus the worldline of a free particle is given by

et =vtr4+a", pn=0,1,2,3

where v* and a* are constants'. The requirement that free particles cannot
travel faster than photons can be expressed as

(W2 > (v1)? + (V1% + ()%

It follows that two events, coordinates z*,y*, on the worldline of a photon
are related by

O e e O S (0 ST N CRE)

The metric coefficients g, = g"” (u,v = 0,1,2,3) are the elements of the
array

g= (2.1.3)

1 0 0 O
0-1 0 O
0 0-1 0
0 0 0-1

so that (2.1.2) can be expressed succinctly in terms of Einstein’s summation
convention,

1 'We use Greek superscripts and subscripts to label space-time components.
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Guw (@ = y*) (@ = y") =0, (2.1.4)

in which paired sub- and superscripts are summed over all possible values
0,1,2,3. So if O and O’ are two inertial observers who have set up coordi-
nate systems x and z’, it can be shown that the most general transformation
compatible with the assumptions is of the linear form

= A", 2" 4 at. (2.1.5)

For the moment we shall consider only homogeneous Lorentz transformations
for which a* = 0.
Define the scalar product of two 4-vectors U*, V¥ by

U-V = gMVU,uVV _ UOVO _U-V= UOVO _ UZVZ, (216)

where we use a summation convention over the space components, ¢ = 1,2, 3.
This definition ensures that U -V is unchanged under Lorentz transformations.
For example, because photons appear to travel with the same constant speed
in every inertial frame, (2.1.4) must hold for the coordinates in every such
frame, so that

o' = guata’ = g A aP A 17 = gpeafa’ =x - x.

This requires
Guv = AP ugpo/la v (217)

or, in matrix notation,
g=ATgA. (2.1.8)

where superscript T denotes the matrix transpose. It follows that the deter-
minant of the transformation matrix satisfies

(det A)?> =1, detA=+1
so that the transformation A is nonsingular, and its inverse is given by
At =g ATy (2.1.9)
Covectors are defined by
z, = g’ = (o, —X); (2.1.10)

from (2.1.9), covectors transform according to A~! rather than A, and scalar
products (2.1.6) take the simple form

U-V =g, UV =U,VF=U"V,.

We shall also encounter 4-tensors, in particular second rank tensors T,
whose transformation law is



66 2 Relativistic wave equations for free particles
T/Ll/ _ Aup Auo' T/ pa.

As with 4-vectors, we can define tensors with a mix of contravariant and
covariant indices, for example the rank 2 tensor T*, = g,, T"?, in which the
covariant indices transform using A~"' instead of A. Tensors of higher ranks
with, say, p contra- and ¢ covariant indices will also appear in this book.

The simple form of the Minkowski metric g, (2.1.3), means that the dis-
tinction between co- and contravariant indices is not very significant here,
except for algebraic book-keeping. It is quite a different matter in curvilinear
coordinate systems [3], which we need not consider in this book.

2.2 The Lorentz group

If Ay and Ay are two Lorentz transformations, then the matrix product, A =
Ay As is also a Lorentz transformation: for by (2.1.8),

ATQA = (/11/12)T9/11/12 = Ag/f{g/h/lz = AngAz =9,

and det A = det(A;43) = det Ay det A; = +1. Hence the set of A matrices
forms a regular matrix group (the Lorentz group, £) with respect to ordi-
nary matrix multiplication, designated SO(3,1) [4, Chapter 3] [5, 6]. Equation
(2.1.7) furnishes 10 constraints on the 16 components of the 4 x 4 matrix A;
the result is that each A in £ can be indexed in terms of 6 free parameters.

A proper Lorentz transformation is characterized as having det A = 1; such
transformations can be generated by a succession of infinitesimal changes
in the parameters starting from the identity A = 1. They include (a) the
rotations, forming a proper subgroup, SO(3), of L, of the form

AR) = ((l)T lg) (2.2.1)

where 0 = (0,0,0) and R is a 3 x 3 orthogonal matrix; and (b) the boosts
consisting of all transformations which relate one frame of reference to another
moving with uniform relative speed v. In particular, a boost that leaves the
2% and 23 axes invariant has the form

coshf3 —sinh(300
—sinh 3 cosh3 00

Aby) = 0 0 10 (2.2.2)
0 0 01
where v
tanh 3 = =

A general proper Lorentz transformation can be constructed by combining
two or more of these elements.
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The Lorentz transformations can be divided into four classes, characterized
by the sign of det A and by whether A% > 1 or A% < —1, distinguished by
the fact that it is impossible to pass from one class to another by smoothly
varying the parameters:

1. Ll: The proper, orthochronous transformations, which transform positive
time-like vectors into positive time-like vectors, have det A =1, A% > 1.

2. £1: det A = —1, A% > 1. These are obtained from the proper Lorentz
transformations by a space inversion: z° = 20, — —=.

3. LY det A = —1, A% < —1. These are obtained from the proper Lorentz
transformations by a time inversion: 20 — —2°, £ — x.

4. Lﬁ_: det A = 1, A% < —1. These are obtained from the proper Lorentz
transformations by both space and time inversions: z# — —zH pu =
0,1,2,3.

2.2.1 * Spinor representation of Lorentz transformations

The group SL(2,C) of complex linear transformations of unit determinant in
two-dimensional spinor space acts as the universal covering group for L:I_. We
denote the Pauli spin matrices by

o) = <(1)(1)) oy = <? _é>, o3 = (é _?) (2.2.3)

together with the identity matrix

10
gg i — <01>

and define the Hermitian matrix

0 3 1 o2
' +a x 1T ) (2.2.4)

X i=zto, = )
K al +ix? 20— 23

The condition that this matrix be Hermitian is necessary and sufficient to
ensure that the x* are real. It follows immediately that

det X = (2°)% — (z")? — (2?)? — (2%)? = 2tz (2.2.5)

is Lorentz invariant, and because
1
oy = 5 [det(X +Y) — det X — det Y,

so are all scalar products of four vectors. We conclude that given any complex
2 x 2 matrix U with unit determinant, detU = 1, we can find a proper
orthochronous Lorentz transformation A(U) such that

X' =UXU' = [A(U)z)" o, (2.2.6)
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The neatest way to exhibit this correspondence uses the fact that every com-
plex matrix U can be written

U=utc,, u"eC

so that
wu, =detU =1,

by (2.2.5). Thus only 6 of the 8 real numbers comprising the elements of
a complex 2 X 2 matrix are independent, corresponding to the number of
parameters need to specify a Lorentz transformation. Because

0,05 = (51'3' + ieijkak; and [0’0, O'Z'} =0 (227)
the Pauli matrices anticommute,
{O’i, O’j} = 2(5@‘, (228)

so that
tr o, = 20,0, trouo, =20, (2.2.9)

Applying (2.2.9) to (2.2.4) we see that

1
H = 3 tr (0,X) (2.2.10)

so that the result of a Lorentz transformation gives components
T 1 X/ _ 1 X T _ 1 'I‘ v
= §tr (0, X") = §tr (0, UXU") = itr (0,Uc, UMz
from which we get
1
A (U) = 5t (0,Uc,U"). (2.2.11)

It remains to verify that A*, (U) satisfies the group multiplication law of EE_.
This follows directly from (2.2.11) with the aid of the result

tr (Uoy,)tr (o,U") =2tr (UU").

A convenient parametrization is
1 ) 1
U=og cos§g0—|—zn~0' sin ;¢ (2.2.12)

where n is a unit vector in R? and ¢ may be complex. Then

1 1
Ut =0 cos§<p—in-0'sin§<p,

1\" 1 \"
Ul =0y (COSQQD) —in* o (sin2g0> .

(2.2.13)
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The subgroup SU(2)C SL(2,C) consists of all elements of SL(2,C) such that
Ut = U=, namely

1 1
Un(p) = 0¢ cos 3¢ +in - o sin 2% ¥E R, n € R3. (2.2.14)

This corresponds to rotations through an angle ¢ about the real axis n in
R3 as studied in Appendix B.3 and is double valued. Alternatively, we can
require U to be Hermitian, U = UT, which leads to

Un(B) = o0 cosh %6 +in - o sinh %B (2.2.15)

corresponding to a Lorentz boost (2.2.2). Examination of the dependence of
A(U) on the components u* shows that A% > 0, so that this construction
covers only EL. However, the identity in El can be generated with (u’, u) =
(£1,0), showing once again the two-valued character of the homomorphism.

2.2.2 x Infinitesimal Lorentz transformations and their generators

Infinitesimal proper Lorentz transformations are close to the identity in EL,
and we can write
A, =6, e, 4+ (2.2.16)

where 0#, takes the value 1 if u = v and zero otherwise, or
Ap,l/ :guu+5)\uu+"'

where ¢ is a real parameter and (2.1.8) is satisfied to O(e?) if A\, = — Ay
To determine these infinitesimal generators, consider first the 3-dimensional
rotations (2.2.1). A rotation about the x3-axis through an angle 6 in the plane
of 2! and z? is defined by

1 0 00
0 cosf sinf0
0 —sinf cosf 0
0 0 01

/1(9)12 —

which can be expanded in powers of 6 to give an expression of the form (2.2.16)
with the infinitesimal generator matrix

0 000
L2 |0 010

M) =10 100 (2.2.17)
0 000

where p labels rows, v labels columns, the superscripts 12 label the plane
of rotation, and ¢ is replaced by 6. Similar matrices can be constructed for
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rotations about each of the other space axes. The standard boost (2.2.2) along
the z! axis has the infinitesimal generator

0-100
Lo | -1 000

M) =170 000 (2.2.18)
0 000

where the superscripts 01 show that the boost operates in the plane of z°
and ', and ¢ is replaced by 3. If the collection of infinitesimal generators are
designated M*,,, then we can define

MM = _ MV

and an arbitrary infinitesimal Lorentz transformation can be expressed as
Ale)=1 1 M 2.2.1
(e)=T+ € u (2.2.19)

where the infinitesimal parameters satisfy e*” = —&”# of which only 6 are
independent.
The infinitesimal generators satisfy the commutation relations

M, Mool = gupMuo + GuoMpup — GuoMup — gupM o (2.2.20)

Whilst this looks complicated, the fact that the metric coefficient g,,,, vanishes
unless ¢ = v means that the right-hand side of (2.2.20) is non-zero only when,
say, ft = o; in this case the right hand side reduces to £M,,. All other
commutators vanish.

2.2.3 * Representations of the Lorentz group

Let G be a group with elements g1, g2, . .. and identity e, and let S be a linear
vector space. A set of linear operators T'(g;) : S — S is said to generate a
representation of G if T'(e) = E, where E is the identity in S, and if for any
pair of elements g1, 92 € G,

T(91)T(92) = T(9192)~

If the representation space S has finite dimension s, then the representation is
said to be s-dimensional. In general, several group elements can map into the
same operator, the extreme case being the identity representation when T'(g) =
E, Vg € G. The representation is said to be faithful when the representation
is one-to-one.

Let D(A) be a representation of the Lorentz group, and denote the in-
finitesimal generators of the representation by M,,,. When A has the form
(2.2.19), it is represented by
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1
D=1+ ic"M,, (2.2.21)
where, following from (2.2.20), the operators M, satisfy

(M, Mpo] = =i (9upMuo + gvoMpup — GuoMup — gupMyuo) - (2.2.22)

Thus to find the representations of the Lorentz group we must identify all
possible realizations of these commutation relations.

The Lorentz group has irreducible representations that have both finite
and infinite dimension. To construct finite dimensional irreducible represen-
tations, we note that the operators

J = (Mas, M3, My2), K = (Mo, Mo2, Mop3), (2.2.23)
have the commutation relations
[JZ', Jj] = ’L'Eiij;c, [Ki7Kj] = —ieiijk, [Ji,Kj] = iEiijk:a (2.2.24)

where ¢, is the Levi-Civita symbol, taking the value +1 or -1 according as
ijk is an even or odd permutation of 123, and zero otherwise. There are two
operators, the Casimir operators, which commute with all operators of the
representation, namely

1 1
Cr = 5 My MM = JP-K? Oy = 1€ My Mo = 27 - K. (2.2.25)

These are therefore group invariants, and, by Schur’s first lemma [6, §4.8], are
multiples of the identity in any irreducible representation. We can therefore
use the values of Cy and C5 of to label each irreducible representation.

The combinations

1 1
J = 5(J +iK), K'= 5(J —iK) (2.2.26)
have commutation relations

vy i

The operator sets J/,i = 1,2,3 and K/,i = 1,2,3 thus satisfy the standard
commutation relations for angular momentum operators [6, §7.4]. The J/,i =
1,2,3 have an irreducible representation of integer dimension 2j + 1 spanned
by the vectors |j,m), m = —j,—j — 1,...,75. If J = J| £iJ}, J? = JI? 4
J3? + J47, then

2. . .
J7j,m) =305 +1)1,m)

Ty ld,m) = m|j,m), (2.2.28)
Jiljm) =i +1) —m(m£1) [j,m=£1),
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where j can take values 0,1/2,1,3/2,.... Because J; and K commute for
all pairs of subscripts ¢, j, the infinitesimal generators possess irreducible rep-
resentations of finite rank (27 + 1)(2j" + 1) which we can label D). The
Casimir operators for this representation have the values

Cr=2[(+1)+j'("+1)], Co==2i[j(G+1) -5 +1)
We consider the simplest cases:

e D(9): This has rank 1; the infinitesimal generators are all null. Objects
belonging to this trivial representation are therefore relativistic scalars.

e D=0 and DO:3): These are two-dimensional conjugate spinor represen-
tations. They are inequivalent, since the infinitesimal operators have the

realizations
1
D(%’O) : Jk. = %O’k- Kk = _iiak
1
D(O’%) : Ji = %O’k K, = +§i0'k

where the oy, are Pauli matrices (2.2.3).

e DD This has rank 4, and the representation consists of four component
vectors. The matrices represented by (2.2.17) and (2.2.18) generate the
infinitesimal operators of this representation.

The improper operations of space inversion, I, and time inversion, I; satisfy
commutation ([-, -]) and anticommutation ({ -, - }) relations

[Lst, Ji] = [Lis, K] = 0,
{1, Ki} = [It, Ji] =0, (2.2.29)
{Is, K;} = [I,,J;]) =0.

Consequently operators J', K’ defined in (2.2.26) satisfy
ILLK' =J1,, LK =J1I,. (2.2.30)

If we now adjoin I to the proper orthochronous Lorentz group to generate
the set £, we find that a basis vector [jm,j/m’) in DU with j # j' is
mapped by I into a multiple of |j'm’, jm); for

JiIs|jm, j'm’y = I,KS|jm, j'm’y = m'Is|jm, j'm').

It follows that |j'm’,jm) and Ig|jm,j'm’) transform under different irre-
ducible representations. If V77 " denotes the vector space associated with D7 )
and j # j/, then the space V37" & V77 of dimension 2(2j 4 1)(25’ + 1) will be
an irreducible vector space for the improper orthochronous Lorentz group.

This does not exhaust the catalogue of irreducible representations of the
Lorentz group. Hermitian representations are necessarily infinite dimensional;
they can be parametrized by setting
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2j+1=k+ic, 2§ +1=—k+ic

where k is an integer and c is real, so that the Casimir operators of the
representation take the values

Ci=c+1-k* Cy=ck.

Unitary representations also exist with

1
2j+1=25+1=¢, |c|§§.

These are of no interest in this book.

2.3 The Poincaré group

The Poincaré (or inhomogeneous Lorentz) group consists of all coordinate
transformations L = {a, A} of the form

'* = (Lo)* = A* ¥ + ¥ (2.3.1)

where /A is a homogeneous Lorentz transformation as described in §2.2. If L=
{a, A} is a second such transformation, then we have the law of composition

LL={Aa+a,AA}. (2.3.2)

Evidently {0,1}, where 1 is the 4 x 4 identity matrix, plays the part of the
identity, and it is easy to verify that these coordinate transformations generate
a group.

Close to the identity, (2.3.1) may be written

g =gt et a + e, ep=—cuy

so that the infinitesimal operators in a group representation have the general
form

1
D=1+ 52 e My, +ie'P, (2.3.3)
where, if 0, denotes the partial derivative with respect to x*,
P,=10,, My, =x,P, —z,P,=—-M,,.

Thus the 6 independent operators M,,,, are supplemented by the 4 operators
P, so the the Poincaré group has 10 parameters. The Lorentz group commu-
tators (2.2.22),

[M/U/7 Mpa] =—1 (gp,pMua + gl/aM/Lp - g/u;Mvp - gupMuzT) s (234)

must be augmented [7, 8, 9] by
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[Pus P =0, My, Po] = (0P — 9o ) (2.35)
Wigner [7] and Shirokov [9] introduce the vector
gu = M P” (2.3.6)
and the pseudovector

1
W = 5 epwpe MY P, (2.3.7)

where €,,,,,5, takes the value +1 if pvpo is an even permutation of 0123, -1 if
it is an odd permutation and zero otherwise. Because

gu P =0, w,P"=0, (2.3.8)

only 6 of the 8 components of g, and w, are independent, so that we can
replace the 6 independent operators M, by these vectors, using

My = (9. Py = 9u P + €uupo PP 07) /Ch, (2.3.9)
where C is one of the two Casimir invariants,
Ci=P, P, Cr=w,wh. (2.3.10)
In terms of the original set of operators,
Cy=M,, M P*P, — %MW M*™ P°P,.

The commutation relations are

(M, wp] =i (GupWp — Gupwy) , (2.3.11)
(wy,P)) =0, [gu,w)]=1w,P,, [wy,w,]="1i€u,,w’P°, (2.3.12)
[gl“ PV] =1 (P#PV - g,chl) P [g#agu} - iM,uuCL (2313)

These relations are easier to understand if we rewrite these equations in terms
of the 3-vectors J and K defined in (2.2.23) along with the 3-vector P =
(P, Py, P3) and H/c = Py. This gives the set of commutators

[Ji, Jj] = +i€iijk7 [JZ, KJ] = +Z.€iijk: [sz Kj] = _ieiijka (2314)
[Ji,Pj} = +i€ijkpka [KZ, Pj] = +’L(SZJH, (2315)

[Ji,H] =0, [K; H]=1iP,. (2.3.16)

For a free particle we can interpret the operator P as its linear momentum,
H = cPy as its kinetic energy, J (the infinitesimal operator connected with
spatial rotation) as its angular momentum, and K with boosts. The remaining

generators are
wt = (P-J, PhJ+ P x K), (2.3.17)

¢"=(—K-P, PhK — J x P).
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2.3.1 * Representations of the Poincaré group

Construction of the irreducible representations of the Poincaré group requires
a complete set of six commuting operators. The two Casimir operators provide
two of the set and, in view of (2.3.12), it is convenient to choose the others
to be the three components of P and one of the components of w*, say w?,
whose eigenvalues then label the basis vectors of the representation. We write
these vectors |Cy,Co;p, o), where p denotes the eigenvalues of P and o is
proportional to the eigenvalue of w®. It follows that when C; and Cy have
been specified, and

P|Cy,Co;p,0) = p|C1,Co;p,0)
then, since C; = P,P* = (P°)? — P? and H = cP°,
H|Cy,Cy;p,0) = £c/Cy + p?|C1,Cy;p, 0)

Table 2.1 shows the three separate types of irreducible representation cor-
responding to the sign and magnitude of Cy = P,P* in keeping with the
physical interpretation of P* as the 4-momentum of a particle. The first two

Table 2.1. Irreducible representations of the Poincaré group

Class

P,, P* time-like: C; >0
Py P* null: C1=0,P°#£0
Pr  P* space-like: C1 <0

classes, C; = m2c? > 0, are the most interesting, as we can interpret m as a
particle rest mass. In the class P,,,, we have
Cy = H?/? — p* .= m?c?

so that

H = +c/m?2c2 + p? (2.3.18)

The sign of H is an invariant, and therefore we can define a third invariant
operator

Cs:=sgn H=+1 (2.3.19)
As (5 is an invariant, we can calculate its value in any convenient frame, in
particular the rest frame of the particle in which p = 0 and so H = mc?.
From (2.3.17) we see that in this case

wh' = (0,med), Cy=—w,wh =m?J?
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so that the space-like part of w* is proportional to J in the particle rest frame.
According to (2.3.14), the components of w* satisfy the usual commutation
relations for angular momentum operators, so that the states can be classified
in terms of the eigenvalues of J? and of Js. Thus the quantum numbers we
need are

Cy=m2c?s(s+1), s=0,-,1,=,... (2.3.20)

and
c=—-s8—5+1,...,5s—1,s.

Because the pair s, o refer to a particle at rest, we interpret this as the intrinsic
angular momentum or spin of the particle. In sum, a free particle with rest
mass m and spin s has an irreducible representation space with basis vectors
|p,o),c =—s,—s+1,...,s—1,s.
The class P corresponds to rest mass m = 0 (Cy = 0). If Cy also vanishes,
we have that both P# and w" are null vectors such that, (2.3.17), P*w, = 0.
So we can set wH = g P*H; again using (2.3.17) we find that the eigenvalues of
o are
oc=p-J/po. (2.3.21)

Because pH is a null vector, (p°)? = p?, so that (2.3.21) identifies o as the
helicity of the particle, defined as its component of the intrinsic angular mo-
mentum along the particle’s momentum vector. When o # 0, there are two
independent states corresponding to two different polarizations, one parallel,
the other anti-parallel to the motion. When ¢ = 0, there is only one such
state.

The helicity of a massless particle is a Lorentz invariant quantity, hav-
ing the same value in every inertial frame. We shall see below that particles
of opposite helicity are related by space inversion. Because electromagnetic
forces have space inversion symmetry, the massless particles with helicity +1
associated with electromagnetic phenomena are called photons. Similarly, the
massless particles with helicity +2 believed to be associated with gravitation,
which also has space inversion symmetry, are called gravitons. However, the
supposedly massless particles emitted in nuclear beta decays have helicity i%.
Apart from gravitation, they have no interactions that respect space inversion
symmetry, and they are therefore distinguished by calling those with helicity
—|—% neutrinos, and those with helicity —% antineutrinos.

There exist more representations when Cy > 0. These are infinite-
dimensional in the spin variable, so that the corresponding polarization is
a continuous variable. Such representations appear not to have any counter-
part in the real world, and we need not consider them further. Similarly, we
can rule out the class P, having C; < 0, on the grounds that then we can
always find an inertial frame in which the energy po becomes arbitrarily large.
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2.3.2 x Space and time reflections

When the improper operations of space and time reflection are included, the
full Poincaré group, like the Lorentz group, has four disjoint components only
one of which is connected to the identity. The others are obtained from the
continuous component by adjoining the discrete operators P and T of space
and time reflection

1 0 0 O —-1000
0-1 0 O 0100
T woo_
PH, = 0 0-1 ol° TH, = 0010 (2.3.22)
0 0 0-1 0001

to the operations of the proper orthochronous Poincaré group PI_. Let us
denote a representation of the Poincaré group by D(L), where L = {a, A}
satisfies the composition law (2.3.2). Then the operators of the representation

must satisfy - ~
D(L)D(L) = D(LL).

Suppose that P and T have the representations
P=D({0,P}), T=D({0,T}).

Then if L = {a, A} is an arbitrary proper orthochronous transformation, we
should expect that

PD(L)P~' = D({Pa, PAP™'}) (2.3.23)

and
TD(L)T' = D{Ta, TAT'}) (2.3.24)

if our description is to be invariant with respect to space and time reflections.
When D(L) is the infinitesimal transformation of (2.3.3) these relations give

PiM"W P! =iP, P,” MP?, PiPFPt =iP, PP (2.3.25)
TiM™ T =i AT,V MP?, TiPrT ' =qiT,Pr. (2.3.26)

Before we can extract the commutation rules from these results, we have to
decide whether P and T are linear and unitary or antilinear and antiunitary;
definitions in Appendix B.1.7. Consider P first. Then, using (2.3.22) we see
that
PiP'P~t =P’

If P is unitary, then we can cancel i on both sides and we get P P P~! = PO,
so that P and P° = H commute. If, on the other hand, P is antiunitary, then
complex conjugation is required which would make P anticommute with H.

Suppose that 1 is an eigenstate of H with energy E > 0; then if P and H
anticommute we should have
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PEY=PHy =—HPvy

so that Py would be an eigenstate of H with energy —FE < 0. If ¥ belongs
to the particle representation characterized by mass m and spin s, then Py
belongs to a different representation with the opposite sign of H. We prevent
this by choosing P to be unitary. Applying the same argument to T forces us
to choose it to be antiunitary. Taking account of (2.2.23), we find

[P,H =0, {P,P}=0, [P,J]=0, {P,K}=0, (2.3.27)
and
[T,H] =0, {T,P}=0, {T,J}=0, [T,K]=0. (2.3.28)

This seems physically reasonable: P reverses the sense of P and K whilst J,
which must transform like the vector product r X p, is left unchanged. Simi-
larly, T reverses the sense of P and of J, consistent with the observation that
an observer would see bodies spinning in the opposite sense after a time rever-
sal. It is easy to check the consistency of this choice with other commutation
relations.

Suppose now that ¥(z) is a smooth function of the space-time coordinate
x; then

U(x+ X) =exp(iX -p)¥(x)

which is formally equivalent to Taylor’s theorem if we write, as usual in quan-
tum mechanics,

0
Pi =

Because pg = H/c and z2° = ct, we see that

HU(x) = cpo¥ () = z%—f (2.3.29)
which has the form of a Schrédinger equation. Our construction ensures that
if ¥(x) satisfies (2.3.29), then because D(L)¥(z) is in the same representation
space when L is in the proper orthochronous Poincaré group Pl, D(L)¥(x)
also satisfies (2.3.29). However, things are more complicated with the opera-
tors P and T.

Again we consider P first. Because it is a unitary operator, we must have
in general

PU(ct,x) = e"“¥(ct, —x) (2.3.30)

where « is some real number. Clearly we are dealing with a ray representation
in which ¥ and e’®¥ represent the same state. It follows that ¥(ct, —z) and
¥ (ct,x) both belong to the same representation (m,s) and satisfy the same
Schrodinger equation (2.3.29). It follows from (2.3.30) that

P2~1 (2.3.31)
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since two inversions multiply the original ¥(ct, ) by a complex factor of unit
modulus, denoted by the symbol ~.
The treatment of time inversion is more complicated. The corresponding
relation to (2.3.30) is
TY(ct,x) = T7P*(—ct,x) (2.3.32)

where 7 is a matrix of dimension (2s 4+ 1) x (2s + 1), such that
T8 17l = —s. (2.3.33)

Such a matrix exists because the matrices —s* and s have the same commu-
tation relations. There is only one irreducible representation of spin operators
of dimension 2s+ 1, so that the two representations must be equivalent. Thus
7717 commutes with all the components of s, and by Schur’s first lemma
(6, §4.8]) is a multiple of the identity. Hence

T2~ 1 (2.3.34)

It can also be shown that 7 is defined up to an arbitrary phase factor and must
be a symmetric matrix when s is an integer, and anti-symmetric otherwise.
The scheme just outlined does not encompass the usual relativistic wave
equations for which a representation space that admits a unitary represen-
tation of the full Poincaré group is needed. In addition to the Wigner time
reflection operator T satisfying (2.3.28), we introduce the Pauli operator Z
satisfying
{Z,H} =[Z,P]={Z,K}=1[Z,J] =0, (2.3.35)

along with
ZP ~PZ, Z?~1.

We also need the antiunitary charge conjugation operator C, defined by
C:=17T, (2.3.36)

which commutes with all the generators of 771:

[CH|=[C,P]=[C,K]|=[Z,J] =0. (2.3.37)
If we also assume
TZ~ZT
then
CP~PC, CT~TC, CZ~ZC, C?>~1. (2.3.38)

Because Z and H commute, the eigenvalues of H must now occur in pairs of
equal and opposite sign. We can then accomodate all the improper operations
in a unitary representation for (m, s) by doubling the dimension to 2(2s + 1).
Following Foldy [10] we choose a coordinate representation space on functions
W (ct, ) with inner product
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/ o't (ct, @) (ct, ) o (2.3.39)

on which the infinitesimal operators are realized by

H :=cpy =pFE (2.3.40)

P:=p=-iV (2.3.41)

J=L+S§ (2.3.42)
o1 cSxXp

K:=p 5 (zE + Ex) ﬂch T ctp (2.3.43)

where L = & X p as usual and from (2.3.18) and (2.3.19)
E? = 2p® + m2ch.

All matrices have dimension 2(2s + 1) x 2(2s + 1), and may be partitioned
into (2s + 1) x (2s + 1) blocks, for example

~(19). 5= ()

The realization of the improper operators is

PU(ct,x) = o¥(ct, —x) (2.3.44)
2¥(ct,x) = (¥ (—ct, x) (2.3.45)
T (ct,x) = 79" (—ct, x) (2.3.46)
C¥(ct,x) = ZTU(ct,x) = K" (—ct, x), (2.3.47)

where the matrices have the block structure

_ 0 Is 0 _ 10, 0 Is
r=e(in) = (25)

(71 O SR 7 T A ==
T‘(Oirs)’ neT=e (rs 0)

in which I is the (2s + 1) x (2s + 1) identity and 74 is a matrix satisfying
(2.3.33),(2.3.34). The phases and the signs may be assigned independently. It
follows that

{8y =[¢,8]=0, C(o~a(, (P~
where T is the 2(2s 4+ 1) x 2(2s + 1) identity, whilst

B t=8 18T =-8, rottl~o, TCTTI~( T~ L

The selection of a canonical form for strongly invariant wave equations requires
the phases to be defined:

=gt FP=oot=¢ct=1 o>~I, P~1I (o~o( (2.3.48)
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S =8 [Si,S;] = iei1Sk (2.3.49)
8,8 =[0,8]=[¢,S]=0, [B,0]={B,(}=0 (2.3.50)

It follows that 3 has eigenvalues 1 and that if ¢ is an eigenvector belonging
to eigenvalue +1, then (1 is an eigenvector belonging to eigenvalue -1, so that
the representation space always has even dimension. For T,Z we have

=1, 87 1=, 787t 1=-8,

T~ I, To*t ~o, TCTTE A

kel =1, kB '=-8, kS*k'=-8,

kk* ~ 1, ko'kl~o, KCRTI~C KT~ TR
The canonical equations are invariant under similarity transformations of the
form

E-UEU™,  €=p,0(8

and
E=E—UEU™, E=k,T

where U commutes with both @ and p. This defines an equivalence class of
representations in which any member can be transformed into the canonical
form. An example is Dirac’s equation for spin % particles for which the relevant
transformation was obtained by Foldy and Wouthuysen [11].

2.4 The Klein-Gordon equation
For a particle with mass m > 0 and spin s = 0, the relation
E? = p? + m?c? (2.4.1)

combined with the correspondence principle identification p* = i0* leads
immediately to the equation

(O 4+ m?*c?) ¢(z) =0, (2.4.2)
1 9 2
0= = e

Although this equation is associated with the names of Klein and Gordon,
it was proposed independently by several other people. Indeed Schrodinger
wrote it down along with his more familiar non-relativistic wave equation.
The differential operator (O + m?2c?) is Lorentz invariant, and the amplitude
@(z) transforms under an inhomogeneous Lorentz transformation, ' = Az+a,
to

¢'(z') = ¢()
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or
¢ (z) = (A (z — a)) (2.4.3)
The equation (2.4.1) makes it clear that solutions exist with both positive and
negative energies: Ep = cp® = +1/p? + m?c?.
Every acceptable wave equation must admit the existence of a four-current
density, j#, satisfying a continuity equation

9uit =0, P =cp, §=0"5%7% (2.4.4)

where p(z) is the density at the space-time point z and j is the associated cur-
rent. This equation expresses the conservation of matter and is clearly Lorentz
invariant provided j* is a genuine four vector. In more familiar nonrelativistic
notation (2.4.4) reads

dp

ot
To find j* we proceed as in nonrelativistic wave mechanics to write down the
equation

+div j =0. (2.4.5)

¢* (O +m?c®) ¢(z) — ¢ (O +m?c?) ¢*(x) =0,
which can be simplified to read
Ou (970" — 0"9".0) = 0,

suggesting that we define the four-current density as

= S (70— 94 .9) (2.4.6)

i
2m
in which the pre-factor has been chosen so that the space-like components, 7,
have the same form as in nonrelativistic theory. It follows that the density, p,
is represented by

_ﬁ_L w20 A0k N _ b *%_&i)*
p=" =5 (0709 a¢.¢)_2m02 <¢ 5~ B ¢>) (2.4.7)

The Klein-Gordon equation has plane wave solutions of the form
plz) = Ae " | kM = m2c?, (2.4.8)

and then
icOo(x) = Ep, = £V 2k + m2ct.

Substituting into (2.4.7), we see that

_ Eg .
p= W(b ¢ (2.4.9)

so that the sign of p depends on the sign of the energy.
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The fact that expression (2.4.7) is not positive definite, and so can hardly
represent a probability density, was a major obstacle to acceptance of the
Klein-Gordon equation when it was first introduced. The indefinite sign of
the energy E appears connected with the appearance of second order time
derivatives in the Klein-Gordon equation (2.4.2). The initial value solution
of the equation thus requires both ¢ and Jy¢ to be given initially, whereas
ordinary quantum theory, in which only a first order time derivative appears,
just needs the value of ¢. Dirac’s equation [12, 13] for s = 1/2 grew out of
a search for an acceptable relativistic wave equation that was first order in
time. Although it was easy to define a positive definite probability density for
Dirac’s equation, it also possessed negative energy states that were difficult
to understand until the discovery of the positron in 1932 [14] made it feasible
to interpret them in terms of states of anti-particles.

We can put the Klein-Gordon equation into the Foldy canonical form
(2.3.40) for s = 0 by considering the two-component expression

x(z) = (i;%i;) , (2.4.10)

where 9 satisfies (2.4.2), E = ++/m2c2 + p2, p = idp, and

—1
xi(z) = ﬁ
x2(z) = \_7% (E_1/2i080¢ - E1/2¢>

It follows that x(x) is a basis vector for the 2-dimensional (s = 0) represen-
tation of the full Poincaré group since

(E—l/%'caow + El/%p)

Hx = icdx = BEX
PzX:Z81X7 1= 172737
JZX = LZX = 172737

1
Kix = [2 O(z;F + Ex;) + ict@i] x 1=1,2,3,

2c
in which L; = (& x p);, and

10 01
/8_<0_1)7 J_ijv C_K/_<10>7 T_Ia

where [ is the 2 x 2 identity matrix. Particles whose properties are represented
by taking 0 = +1 are said to be scalar whilst those whose amplitudes change
sign under P, 0 = —1 are said to be pseudoscalar. If we substitute (2.4.8)
in (2.4.10), we find that plane wave solutions x4 (z) for positive energy and
X— (z) for negative energy are independent:
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w@=a (7). vw@=a( ). (2.4.11)

Let
X+(ct,x)e := Cxy(ct,x) = kX (ct, x)

be the result of applying the charge conjugation transformation to x(x) so
that

{0
X+(Ct7 m)c =A (e-‘,-ikpul'“' )

which is the same as x_(z) with the signs of E and k reversed.
So far we have considered only neutral particles with zero spin. To describe
charged particles, we make the usual minimal coupling substitution

P, — I, := P, — qA, (2.4.12)

where A, is the four-potential of some external electromagnetic field and ¢ is
the particle’s charge. This leads to the wave equation

(11, 11" +m?>c?®) ¢(z) = 0. (2.4.13)

It now makes more sense to replace the particle four-current density (2.4.6)
with an electric charge-current density
Lo g 'S
gt = ("M — 0'p*.9) — —AFPTP, (2.4.14)
2m m
which presents even more formidable problems of intepretation than (2.4.6).
Thus the charge density becomes

J iq * 50 0 1% @ 4o,
p=L = L (53 — °%".0) — A", (2.4.15)
c 2me mc

which includes the A° component of the four-potential. Suppose that the
space-like part, A = 0, and that A° is independent of time in the cho-
sen frame of reference. Then we expect to obtain stationary states, ¢(z) =
Y(x) exp(—iFEt), for which we find

pl@) = — [B—qA"] *6, (2.4.16)

The implications of this sort of result become evident on choosing a simple
model of a pionic atom, with a negative pion, charge ¢ = —e, orbiting a
massive nucleus, charge +Ze. We assume the nucleus is fixed in space, and
ignore strong nuclear forces which should really be taken into account. Then

Ze?

AY =
q 4dmege
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where V(r) ~ 1/r outside the nucleus, 7 >> Ry, and V(r) - =V as r — 0.
Then (2.4.16) gives

Z
p(w) = LQ |:E+ a:| d)*d)v > Roue
mc r

where (recall A = 1 in the units we are using) a = e?/4weghc is the fine struc-
ture constant [15], and it is clear that the charge density changes sign when-
ever E < —aZ/r. This compounds the difficulty of interpreting the Klein-
Gordon equation as a single particle wave equation. The contradictions are
resolved by quantum field theories such as quantum electrodynamics (QED).

Table 2.2. Fine structure coefficients Fy,; and Fy;

Klein-Gordon Dirac
[: 0 1 2 j: 1/2 3/2 5/2
n n
1 0.625 1 0.125
2 0.1016 0.0182 2 0.0391 0.00781

3 0.0324 0.0077 0.0028 3 0.0139 0.0046 0.0015

The solution of this model problem for a pure Coulomb attraction,
V(r) = 1/r has been given, for example, by Schiff [16, pp. 468-471], and
is of interest for comparison with the corresponding solution of Dirac’s equa-
tion (see later reference). The energy of the particle, when expanded in powers
of the coupling parameter aZ, can be written

22 (@2t ( n 3
Eop = me? |1 @2 _ S0
L= me 2 ot \ixijz 1)t

where n = n’ + 1 + 1, with n’ and [ both non-negative integers, so that n
is a positive integer. The leading term is the rest energy, the second is the
nonrelativistic energy, and the third predicts that the single nonrelativistic

energy level is split into several fine structure levels depending on the value
of I: ) 3
n
AEnl = —1Lin] ch(aZ)‘l, Fnl = ﬁ (l—l—l/2 — 4) .

Although this result predicts some fine structure, it did not fit Paschen’s 1916
results for the fine structure of the He™ n = 3 — n = 4 line [17, p. 214], and a
satisfactory explanation was not forthcoming until 1925 when Uhlenbeck and
Goudsmit tried replacing the denominator [+1/2 by j+1/2, where j = [+1/2
is the total angular momentum quantum number resulting from coupling the
orbital angular momentum ! to the electron spin 1/2 [17, p. 214]. We shall
see in Chapter 3 that an expansion of the eigenvalues of Dirac’s equation,
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(3.3.25), confirmed Uhlenbeck and Goudsmit’s guesswork. Table 2.2 shows
that the splitting predicted by the Klein-Gordon equation is on average more
than double that of the modified formula. There seems no way to escape the
conclusion that the Klein-Gordon equation for a spin zero particle is not the
right starting point for atomic and molecular modelling.

2.5 The Dirac equation

Dirac’s theory of canonical transformations in quantum mechanics relied on a
density p that was positive definite, and he believed in 1927 that this meant
that the wave equation must be linear in the time derivative [17, p. 289]. He
therefore searched for a free-particle equation of the form

Do (x) + X (x) + imeBi(z) = 0 (2.5.1)

in which ¥(z) is vector-valued, and a* and § are n X n matrices, for some as
yet unknown value of n. Then it seems reasonable to take p to be the positive
definite scalar

p =41 (@)(x) (2.5.2)
where T is the Hermitian adjoint (conjugate transpose) vector. This has to
satisfy the continuity equation (2.4.5)

% +divy = 0.

Taking the adjoint of (2.5.1),
dov' () + Ot () (@) — imy? (2) 8" = 0

Multiply this equation on the right by 1 (z), (2.5.1) on the left by ¥ (z) and
adding gives

Oolep(a) + ¢ {a (@) (0 () + v (@)aks(a)}
+imey! (@) (8 B7) ¥ (x) =0,
which reduces to the continuity equation if all the matrices are Hermitian,
pr=p, (") =a

and we define
i*(x) = eyl (z)a (). (2.5.3)

In the same way, if we operate on (2.5.1) from the left with
80 — akak — imcﬁ

we recover the Klein-Gordon equation
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(O+m*c?) ¢(z) =0
provided

{od, 0"y =265, {8} =0, (/)" =(B)?=1, (2.5.4)

where I, is the n x n identity matrix. Dirac found that he could satisfy (2.5.4)
by choosing n = 4. Whenever we need to be explicit, we shall use the standard

realization )
; 0 o 10
o= (27, 5= (15). 255

where the 07, j = 1,2,3 are the Pauli matrices (2.2.3) and I is the corre-
sponding 2 x 2 identity matrix.

The success of this formulation is a matter of history. One of its triumphs
is the prediction that a particle satisfying Dirac’s equation has intrinisic
spin s = 1/2, consistent with the four-dimensional spinor character of the
Dirac wavefunction. (The term spinor, introduced by Ehrenfest [17, p.292],
has stuck.) However, as formulated in this section, Dirac’s equation is not in
Foldy’s canonical form [10], and we shall examine the relation between the
representations in Section 2.5.3 below.

2.5.1 y-Matrices and covariant form of Dirac’s equation

Dirac’s equation takes a more symmetric form that is very convenient for
exhibiting its covariance properties if we introduce new 4 x 4 matrices

V=5, =8 i=1,23. (2.5.6)
Multiplying (2.5.1) on the left by i/, we find
{v*p, —me}yp = 0. (2.5.7)

where we have made the replacement p, := id,. The anticommutation rela-
tions (2.5.4) are replaced by

{2} =29""1, (2.5.8)
so that the matrices with space-like indices are antihermitian,
'yt = —I;, (i not summed) (2.5.9)

whilst
040 = 1,. (2.5.10)

Using the standard realization of the a-matrices (2.5.5), we find

o (10 . (0 o
5 _<O—I =i ) (2.5.11)

See Appendix A.2 for other properties of Dirac matrices.
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2.5.2 x Lagrangian formulation of Dirac’s equation

Dirac’s equation can be derived variationally along the lines of Appendix B.9.1
by requiring that the Lagrangian action, S, be stationary

58 =0, S::/ Ld'z, (2.5.12)
D

with respect to variations in the spinor 1, its Dirac adjoint {/; = 940, and
their space-time derivatives. The Lagrangian density, £, is defined by

Lim 5000, —me) b+ 5 (~i0udn = med) v

so that for weak variations ¢ — ¥ + 1, 1Z — {/; + (5{/; we have

55 ()| 5 - ()] o

~ 0L oL
0, |0 = 0 2.5.13

5L = &¢

retaining only terms linear in § and (5{/;. Then since

oL

o

N

. 1 oL 1.
(ty" 0y — me)p — 3 mey, Oy (W) =3 iyt o,

for variations v and 51; that vanish on the boundary, (2.5.12) gives the field
equations

(7"Pu —me)1p =0 (2.5.14)

in agreement with (2.5.7), together with its adjoint. Thus for fields that satisfy
(2.5.14), we have

Y oL
5L =0, (wa =t )5¢> , (2.5.15)

( u¢) (aﬂw

from which we can derive conservation equations. A gauge transformation of
the form

Yo ey, e
where « is a real infinitesimal constant leaves £ invariant, so that in (2.5.15)
0L = 0. To lowest order in «,

oY = i), 6{/; = —iazz;

substituting into (2.5.15), we see that
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—ad, (%w) —0, (2.5.16)
consistent with the interpretation of

" = eyt (2.5.17)

as a conserved particle four-current vector, with time-like component given by
(2.5.2) and space-like components given by (2.5.3). Integrating the continuity
equation (2.4.5) over all space gives

80/ v dPr =0, (2.5.18)

because the surface integral of the current density must vanish. It follows that
the total charge is a constant of the motion.

The canonically conjugate momenta are not independent of the variables
1 and v so that it is not possible to proceed to derive a Hamiltonian in the
manner of Appendix B.9. However we can obtain the Hamiltonian indirectly
from the (unsymmetrized) energy-momentum tensor

T — %z (%V@m - aﬂ{/}y”zp) . (2.5.19)
To derive this, we consider the effect of a translation
r— 2’ =z + ea,
with infinitesimal €, under which
P(x) = P (2") = ( + ea) = P(x) + ea”Ouip(x) + ofe).

so that we can put
0y = ea”0, ()
in (2.5.15). If £ does not depend explicitly on the coordinates, we have

5L = ea"d, L,

yielding

~ 0L oL
ea < 0, L —0, | 0,0 — + o =0.
{ 8 ( "Too,0)  00) " )}
Because a* is arbitrary, this equation gives
a8, T'"" =0, (2.5.20)

showing that T"*¥ gives conserved quantities. The energy-momentum tensor
can be symmetrized, but there is no need to do this, as we can obtain every-
thing we need from the momentum four-vector,
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Pt = / do, T, (2.5.21)

Taking the space-like surface do, = (1,0,0,0)d3x as usual, this definition
gives

PH = /T’”OdBI — %Z/ (,(Z;,YO@N,(/) _ GMQZ')/Ow) d3.’II
= z‘/%oauwd%. (2.5.22)

We can show that the momentum four-vector is constant in time by integrating
(2.5.20) over all space:

o / T B + / ;T d3x = 0.

The second integral can be converted into a surface integral at spatial infinity,
and if we assume the components of the energy-momentum tensor are such
that this surface integral vanishes, the expression reduces to dy P* = 0, proving
the result.

We can interpret the time-like component as the particle Hamiltonian as
in the Foldy representation (2.3.40),

H=cP’ = C/{/;'yopowdgz = /dJT (ca -p+ ﬂmc2) d*z (2.5.23)

where we have used equation (2.5.14), the equivalence v#p, = vOpo — v - p,
and 7% = 3, v = a.

2.5.3 Foldy canonical form and the Foldy-Wouthuysen
transformation

We can fix the representation of the infinitesimal operators of the Foldy alge-
bra by writing

H :=mc*B + ca - p,
Pi::piu i:172u37

1
Ji = Ll+§S7, i:1,2,3,

1
Ki = ?($1H+H$1) +Ctpi, 1= 1,2,3,
c

where L = x X p and where
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The space and time reflection operators are as given by (2.3.44) et seq. with
the 4 x 4 matrices appropriate to the case s = 1/2, with

o:=p, (=Pmmaz= (? é) (2.5.24)
whilst
r=—1t, i =—rr*=—1I,
3l =6, rair = o,

k=r', kel =kKr* =1,

KBTI = B, kalkT = .

Clearly, these expressions are not quite in the Foldy canonical form. However,
they can be transformed into it with the unitary transformation

V(@) = x(@) = Uy(z) (2.5.25)
where
= eX o par(jan@ — E(p)+m02+0ﬁap
' p{ﬁ 2l } 2E(p)(E(p) + mc2)]1/2 (2.5.26)

with E(p) = (p? + m?c?)'/2. Tt is straightforward to verify that U is indeed
unitary, with
E(p) + me® — cfor-p

U T BB )

so that, for example,

H - UHU !
_ (E(p) +mc® + cBa - p) (mc®B + ca - p) (E(p) +mc? — cfa - p)
2E(p)(E(p) + mc?)
(E(p) +mc? +cﬂa p) (BE(p))(E(p) + mc® + cfa - p)
2E(p)(E(p) +mc?)
(E(p) +mc® — cBa - p) (E(p) + mc* + cBa - p)
2(E(p) + mc?)

=p
= BE(p).

The first step used the relations —(Ba - p)? = +(a - p)? = |p|?, to simplify
the product of the last two factors in the numerator, and the remaining steps
depend on the anticommmutation relations (2.5.4). Foldy [10] showed that
the other generators also take the canonical form, the only difference being
the realization of the v matrices, for which

o= —1 0o
o o0
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instead of (2.5.5). As with the Klein-Gordon equation, we see that the repre-
sentation space decomposes into two disjoint subspaces corresponding to the
sign of E:

Hxy = +|E|x+, Hx-=—|E[x-

with respective basis vectors

v=(3) «=()

where u,v each have two nonvanishing components. In the Dirac represen-
tation there is no such clean-cut separation of positive and negative energy
states, and the two manifolds are both spanned by spinors which in general
have four nonvanishing components.

2.5.4 * Position operators in Dirac theory

Another problem of interpretation of Dirac’s equation, which also afflicts wave
equations for other spins such as the Klein-Gordon equation, is the definition
of an operator representing the particle’s position. Suppose, in the Dirac rep-
resentation, we calculate a “velocity” operator, v, using the usual expression
v = i[H,z]. A short calculation gives v = ca; the eigenvalues of all compo-
nents of this operator are +¢, which is physically unacceptable if we want to
use x as a position variable and v as the corresponding velocity. However if
we follow this by calculating the corresponding “acceleration” vector, we find

=20 (v E(i))

where E(p) = ++/¢?p? + m2c¢?, so that

Ap
Y= T

where F(t) oscillates undamped about the “classical mean velocity” of the
particle, ¢?p/E(p); this is known as Zitterbewegung. A fuller discussion may
be found in the books of Thaller [18, §1.6], or Greiner [19, §2.2], where the
Zitterbewegung is attributed to interference between the positive and negative
energy components of the Dirac wavefunction.

Another problem with identifying ca as the particle’s “velocity” vector
is that its components do not commute, [a;, ;] # 0, so that the “velocity”
components are not simultaneously measurable. This suggests that there is
something wrong with the identification, and we should look for another way
of interpreting the formalism. Foldy and Wouthuysen [11] observed that the
Zitterbewegung arises because the a; matrices connect the upper and lower
components of the Dirac spinor, and therefore sought a unitary transformation

+ F(t)
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of the states in which these were decoupled. We have already seen that this
is achieved by the Foldy Wouthuysen operator U of equation (2.5.26). If we
interpret & as the position operator in the Foldy canonical representation,
then the corresponding operator in the Dirac representation is

X :=U"'aU (2.5.27)
Pa_ . »Pla-p)p—iX xplp|
2E(p) 2E(p)(E(p) +mc?)|p|’

This operator has the expected commutation relations

= x+1ic

[Xi,Xj] = 0, [X“p]] 215”
and the corresponding velocity operator, V', satisfies

p pfmc+co-p
E(p)  Ep)

The factor p /E(p,) is just the classical relativistic particle velocity whilst
(Bmc?+ca-p)/E(p) projects onto the states of positive energy, and vanishes
otherwise. Thus this identification works for positive energy solutions. The
position operator X was also derived by Newton and Wigner [20], who showed
that it transforms like a vector under rotations and has eigenfunctions termed
“localized wave functions” satisfying a list of desirable requirements. It also
transforms positive energy wavefunctions into positive energy wavefunctions.

V =i[H X]|=

(2.5.28)

The Foldy-Wouthuysen transformation has interesting consequences for
angular momentum variables. Neither the orbital angular momentum, I :=
x X p nor the spin angular momentum s := %E are separately constants of
the motion for the free particle in the Dirac representation, although their
sum j := I 4+ s is. However L := X X p is a constant of the motion in the
Foldy-Wouthuysen representation, and so is the mean spin operator,

Yy =U"'3U (2.5.29)

_ 5 Blaxp)  , px(¥xp)

E(p) E(p)(E(p) + mc?)

The Foldy-Wouthuysen transformation was a major step forward in under-
standing the nature of the solutions of Dirac’s equation for the free electron.
We shall discuss the application of this method to the motion of an electron in
a hydrogenic atom in Section 3.7.2. Here the transformation to the canonical
form requires the construction of a sequence of unitary transformations to
decouple the positive and negative energy states, equivalent to a perturbation
expansion on powers of p?/c?. This introduces operators of order (p?/c?)?
and higher which have infinite expectation values on the nonrelativistic states
and which are therefore no use for applications. Nevertheless the finite low-
est order terms are often used to give “relativistic corrections” which give
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quite accurate results up to the second row of the Periodic Table. Thus the
Foldy-Wouthuysen transformation is less useful than might have been hoped,
especially for high-Z elements and many-electron systems. The Douglas-Kroll
transformation [21], which also uses a sequence of unitary transformations to
reduce the equations to a two-component form without introducing unusable
perturbation operators, has been developed as a powerful tool for quantum
chemistry by Hess and collaborators [22, 23, 24].

2.5.5 Dirac particles in electromagnetic fields

The minimal coupling ansatz has already been used in discussing the Klein-
Gordon equation (2.4.12), and it is equally applicable to Dirac’s equation.
We assume that the electromagnetic field is defined in terms of a covariant
four-potential

a' = (A% cA), A, =guA" = (Ay,—cA), (2.5.30)

satisfying Maxwell’s equations, discussed in the next section, where ¢ is the
scalar potential and A the vector potential.

Following the same procedure as in nonrelativistic quantum mechanics, we
incorporate this in Dirac’s equation for a particle with charge ¢ by making

the substitution q

pt = I :=pt — Ea" (2.5.31)
The new equation has the form
{yHH,, —mc}yp =0 (2.5.32)
which we can rearrange in the form
zaa—lf ={ca- (p— qA) + Bmc® + qP} (2.5.33)

where @ = cA°.
The wave equation in the form (2.5.32) can be derived straightforwardly
from a Lagrangian _
L =Ly — qvy"au (2.5.34)

where Ly is now the free particle Lagrangian (2.5.12) and the second term cou-
ples the Dirac current to the electromagnetic field. The formalism of Section
2.5.2 is virtually unchanged, yielding the same expressions for the energy-
momentum tensor and for the total momentum provided the four-potential
is also translation invariant. In the hydrogenic case, where we assume a fixed
centre of force, the system is no lon ger invariant with respect to spatial trans-
lations although it is still invariant with respect to translations in time. This
leads to the Hamiltonian
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H =P’ = /¢T {ca - (p — qA) + Bmc? + q@} dix (2.5.35)

appearing in (2.5.33). For an electron, we write ¢ = —e.

The solution of Dirac’s equation for the hydrogenic case, A = 0, ¢ =
+Ze/4megr is a standard textbook problem (see, for example [4, Chapter
9], [18], [25]) which is treated in detail in Sections 3.2 and 3.3. The hydrogenic
spectrum is the union of a continuous spectrum describing scattering states
with two disjoint segments, —oco < E < —mc? and mc? < E < oo, along with
a point spectrum describing bound states having energies in the range 0 < E <
mc?. The point eigenvalues form a countable infinite set whose distribution is
qualitatively much the same as in the nonrelativistic theory of the hydrogen
atom. The eigenvalue sequence converges from below to a limit, £ = mc?,
given by the energy of an electron at rest. The main difference is that the
nonrelativistic terms, E,,n = 1,2,3,..., are split, by “spin-orbit coupling”,
into fine structure levels E,;,n =1,2,3,...,5 =1/2,3/2,...,n — 1/2. Since
E,; < E,, electrons are more tightly bound in the relativistic theory of the
hydrogen atom than in the Schrodinger theory.

2.5.6 x Negative energy states

One of the basic assumptions of quantum mechanics, due originally to
Bohr [26], is that an atom has a stable bound state of lowest energy, the ground
state. It is therefore impossible to release energy from the atom through a
spontaneous transition to a state of lower energy. Evidently relativistic wave
equations predict a continuum of negative energy states with energies less
than —mc?. The bound state Dirac and Schrédinger spectra for hydrogen-like
atoms are qualitatively similar and give a good account of the observations.
How can we reconcile this with the presence of negative energy states?

Dirac [27] wrote that “an electron with negative energy moves in an ex-
ternal field as though it carries a positive charge”, as emphasized in the dis-
cussion of charge conjugation above. He then postulated “ ...that all the
states of negative energy are occupied except perhaps a few of small velocity
...Only the small departure from exact uniformity, brought about by some
of the negative-energy states being unoccupied, can we hope to observe ...”
At first, Dirac identified the “hole” states with protons, although the proton
mass is much bigger than that of the electron. At the time, it was thought
that the only “elementary particles” in nature were electrons and protons,
and it was hypothesized that the mass difference between them might be
accounted for by electromagnetic interactions. It was not until Anderson’s
discovery of the positron [28], which has the same mass as the electron but
charge +e, that some of the confusion was resolved. The “holes” were now
identified as positrons, and the symmetry of the Dirac description of electrons
and positrons could begin to be understood.

At this point, Dirac envisaged the vacuum as a region of space in its lowest
possible energy state in which all negative energy states were occupied. This
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stabilized the ground state of the hydrogen atom, as there can be no “hole”
in the “negative energy sea” into which an electron in the ground state can
fall. Creating a “hole” state requires a minimum energy of order 2mc? to
put the ejected electron into a positive energy state. The “hole” can then be
observed as a real positron. Dirac realised that this meant that even “The
simple problem of the scattering of a photon on an electron is no longer a
two-body problem. It is an infinitely-many particle problem.” [17, p. 350]

The language of Dirac’s “hole theory” remains useful for computational
purposes in atomic and molecular physics as long as any excitations have en-
ergy low in comparison with mc?. It implies that the presence of negative
energy states can, for many purposes, be ignored. It is however an uncom-
fortable construction as the “negative energy sea” has both infinite mass and
charge, both clearly unobservable. It is clearly preferable to work with a for-
malism in which electrons and positrons are put on the same footing without
the need to invoke these infinite quantities. Feynman [29] showed that it was
possible to write down a complete solution of the problem of electron and
positron motion in an external electromagnetic field in terms of boundary
conditions on the wave function. An electron in a positive energy bound or
continuum state has a motion in which the particle’s proper time increases
along its path in space-time. As suggested also by Stiickelberg [30], Feynman
envisaged a positron as an electron for which coordinate time decreases along
the particle’s path; this is reflected in the negative frequency appearing in the
time dependence of negative energy states. The formalism of quantum field
theory, Chapter 4, is presented in terms of field variables with an indefinite
number of particles. The numbers of electrons, N, and positrons, IV, are not
conserved individually, although the total charge Q = e(NN,—N,) is a constant
of the motion. Electrons and positrons can thus be created in pairs without
affecting Q.

Each particle in quantum field theory is represented by a field amplitude,
which will in general be a linear superposition of positive and negative fre-
quency components. The fields propagate according to Huygens’ principle,
in which the solution at a given time can be regarded as the source of sec-
ondary waves whose propagation is described by a Green’s function satisfying
appropriate boundary conditions. The above argument requires that positive
frequency components propagate forwards, negative frequency components
backwards, in time. Section 2.9 shows how this can be accomplished.

2.6 Maxwell’s equations

2.6.1 Covariant form of Maxwell’s equations

Although it is possible to present the electromagnetic field equations due
to Maxwell as an example of a massless field with spin s = 1 within the
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framework established in this chapter, we shall here follow a more traditional
route.

Maxwell’s equations relate the electric and magnetic fields E and B to
the space-time distribution of electric charge p and current density j so that
(in ST units)

divB =0, curl E = f%—?, (2.6.1)
. . 10FE
divE = é, curl B =poj + 250 (2.6.2)

where € is the electric constant, related to the magnetic constant ug and the
speed of light in vacuo by, [15], eopoc? = 1. These equations can be written
in a covariant form in which we identify p and j as the components of a
four-current vector j# such that

jH = (Cp7j17j2’j3) (263)

It follows from (2.6.1) and (2.6.2) that the components of the four current
satisfy a continuity equation

P
a—’t) +divj=0, or 8,j" =0, (2.6.4)

so that the total charge is a relativistic invariant. For justification of this asser-
tion, consider an observer whose velocity four-vector is V#, so that V*V,, = ¢2.
In the observer’s rest frame, V#* = (c, 0,0, 0), and so the scalar j*V,, takes the
invariant value c?p. If the four-current j* is due to a stream of particles of
charge ¢ with four-velocity U*, then j# = NqU*. The observer sees NU*V,, /c?
particles per unit volume, and a charge density j*V,, = NqU"V,/ 2, so that
he then reckons that each particle carries the same charge ¢ independent of
its motion.

The electromagnetic field tensor is a second rank covariant antisymmetric

tensor defined by

0 E Ey Ej
—El 0 —CB3 CBQ

FE, = "B, ¢Bs 0 —cB (2.6.5)
—FE3 —cBy ¢B; 0
and we note the algebraic definitions
Foi=FE;, 1=1,2,3, F;j = —¢€;xcBy, 1,5,k =1,2,3, (2.6.6)
with the antisymmetry conditions Fj,, = —F,,. It is easy to verify that

Maxwell’s equations are equivalent to

ap,Fl/p + 81/Fpu + apFMl/ = 0, (267)
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corresponding to (2.6.1) and

1

o, F* = —j% 2.6.8
H 6063 ( )
corresponding to (2.6.2). These equations are clearly Lorentz covariant pro-
vided F},, behaves like a covariant second rank tensor under Lorentz trans-

formations.
The equations (2.6.1) imply that there is a scalar ¢ and a 3-vector A such

that

A
B=cuwl A, E=- aa—t —grad ¢ (2.6.9)

This does not define the potentials ¢ and A uniquely because gauge transfor-
mations of the form

¢—>¢+%, A— A—grad A (2.6.10)

give the same field vectors. The potentials can be regarded as components of
the covariant four-potential

a, = (¢,—cA) (2.6.11)
so that
F = 0ua, — Oyay (2.6.12)
When this is substituted into (2.6.8), we obtain
1
Oak — 9*(8,a") = — j*. (2.6.13)
€pC

We define the dual electromagnetic field tensor as the tensor F with com-
ponents

~ 1 .
F = §em,p(,F’) , (2.6.14)

where €,,,,, is the alternating tensor, taking the value +1 if uvpo is an even
permutation of 0123, -1 if it is odd, and zero otherwise, so that

0 —CBl —CBQ —CB3
= CBl 0 —E3 Eg
( ) cBs E3 0 —F

CB3 7E2 E1 0

The contractions _
F,F" =4cE - B (2.6.15)

and
F,F" =2(c’B-B—E-E) (2.6.16)

are both Lorentz invariant. Clearly if E - B is null in some frame, it is null in
all frames. We can then say that the tensor F is purely magnetic if 2(c*B -
B - E - E) > 0, as it must then be possible to find an inertial frame in which
E = 0. We say that F'is purely electric if the inequality has the opposite sign.
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2.6.2 x Lagrangian formulation

The field equations can be derived variationally along the lines of Appendix
B.9.1 by requiring that the Lagrangian action

S = / Lem (a,,0,a,) d*z, (2.6.17)
D

be stationary,
05 =0, (2.6.18)

with respect to variations in the functional form of a, and its partial deriva-
tives 0, a,,. The theory of Appendix B.9.1 asssumes that the system has a finite
number of degrees of freedom. Here we need to remember that the number of
degrees of freedom may be infinite.

The integration is over some domain D C R* with 3-boundary dD. We
require that £ be constructed from Lorentz invariant terms; a suitable choice
for the Maxwell field is

Lem = —ieOFWF’“’ — %j“a#. (2.6.19)
where from (2.6.12)
F . F* = (0ua, — Opa,) (0%a” —0"a").
In more familiar notation,
Lom = %GO(E-E—CQB-B) —(pp—3j - A). (2.6.20)

From (2.6.18) we see that the first order variation is

a£6m aLem 4
- — » 2.6.21
58 = / { Dt o () au)}dx (2.6.21)
where
§ (Ovay) = 0y(a, + da,) — Ova,, = 0,(da,).
Now

OLem OLem 4
— 2.6.22
d/D““{a% 8”(a<ayau>)}“ (2.6:22)

differs from (2.6.21) by the integral of a four divergence,

OLem \
/;au <8(ayau)5a#) d X

which can be converted into an integral over the boundary 0D. If the da,
vanish on 0D, but are otherwise arbitrary in D, then standard methods of
the calculus of variations permit us to conclude that the field equations are
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09 . %Lem _ oy <6£"”" ) =0 (2.6.23)

§(0yay) day, d0(0yay)
Substituting
oL 1 oL
em _ _1.pu em Ma? — 9¥al) = eq FHV
T

into (2.6.23), we recover (2.6.8) in the form

1
—— "+ 9, =0
€pC

The antisymmetry of F*¥ ensures current conservation:

0,uj" = €0c 0,0, F" = 0.

2.6.3 Gauge invariance

Gauge transformations of the form (2.6.10)

¢—>¢+%, —A—>—-A+grad A

or
a, = a, + 0, A (2.6.24)

in tensor notation, leave the field equations unchanged. However
L L F,, F* Lo Lin oA
em%*ZGO % 75] a;L*E] ( i )

The last term can be dropped because, after an integration by parts,

/j“(au/l)d“x S /(auj“)/ld“m =0, (2.6.25)

when the current is conserved. The presence of conserved currents is both
necessary and sufficient for gauge invariance of Maxwell’s equations.

So far, we have not attempted to remove the arbitrariness of the four-
potential. The final result for any physical observable should, of course, be
independent of the choice of gauge. One way to do this is to impose a gauge
condition to fix A, for example

divA = 9;A" = 0 (Coulomb gauge) (2.6.26)
or

ouat =0 (Lorentz gauge) (2.6.27)
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When we use the Coulomb gauge, we can eliminate a° from the Lagrangian,
and reduce the number of independent field variables. From (2.6.13), we see

that 1
0,,0" (aO) — 80(@ at) = . 0,
0

which reduces to Poisson’s equation

Vi =L,
€0

from which we get the familiar Coulomb law

ctm

é(ct, ) d?’x’. (2.6.28)

47T€() |$ — ZB

In the Lorentz gauge, d,a* = 0, (2.6.13) reduces to the wave equation

Even if the driving term p vanishes everywhere, there is no necessity for ¢ to
vanish, and it will in general be time-dependent. For this reason, the Coulomb
gauge, which yields Coulomb’s law directly, is often very convenient for for-
mulating atomic and molecular problems, as we shall see later in this book.
Unlike the Lorentz condition, it has the disadvantage that it is not manifestly
Lorentz covariant. It is necessary to examine the gauge dependence of ob-
servables carefully when calculating electromagnetic properties of atoms and
molecules.

It is possible to write (2.6.20) in the Coulomb gauge in a form in which only
transverse fields appear. A vector field V' is said to be transverse if divV = 0.
Thus the electric field vector given by (2.6.9) in Coulomb gauge, divA = 0,
consists of two parts, a transverse field E; = —0.A/dt and a longitudinal field
E| = —grad ¢. As B = curl A, the B field is already transverse. Because

div(¢ grad ¢) = ¢ V3¢ + (grad ¢)2,

we see that
1 1 1 0A 1
—-EE—-—pp=-FE, FE —.grad ¢ — —po.
5 60/’@1) 5 ELEL+ 5 8ra ® 2€0P¢
Now, using the Coulomb gauge condition divA = 0,

A d¢ 0 0

d A.grad A.grad —div (¢pA).
ot B ¢+ Agra ot 6t< grad ¢) = ot iv(e4)
The term on the right can be dropped, because its contribution to the action
can be converted to a surface integral which can be expected to vanish. The
final result is that (2.6.20) can be written in the form



102 2 Relativistic wave equations for free particles

1 1 .
Lem = §€O(EJ_ -E, —¢’B, -B,) - §P¢ +3i.-A, (2.6.29)

where we write B, = B for emphasis, and
R
=7 —eygrad —.
JiL =17 08 ot

It is easy to confirm that j, is transverse, because the divergence of the
last equation reduces to the continuity equation, (2.6.4). Finally we can use
(2.6.28) to write the Lagrangian density in the form

1 .
£em:§€O(EJ_'EJ__CQBJ_'BJ_)+JJ_'A

1 / p(Ct, :E)p(ch CB/) d3x'
8meg |z — /|

(2.6.30)

in which the Coulomb interaction energy emerges naturally.

2.6.4 x Motion of a test charge

The Lagrangian of a free particle with 3-velocity v relative to a given frame

: Liree := —mc*\/1 —v2/c2. (2.6.31)
Each coordinate z* has a canonically conjugate momentum p’ defined by

P’ 1= 0L free/Ovi, i=1,2,3, (2.6.32)
from which we find

% i

p'=my(v)v', where ~y(v)=(1- 1]2/02)71/2.

(2.6.33)

We can therefore construct a free particle Hamiltonian

Hyree(p) := D0 — Lfree = mc*y(v) = cy/m2c2 + p2, (2.6.34)

so that Hypce(p) is also the energy, as expected for a conservative system.
The Lagrangian for the Maxwell field derived from (2.6.19) is

1 1 [,
Lon = =360 [ Fw(@) P @z = [ *(anty)d’a.

where the first term is the Lagrangian for the free Maxwell field, L ¢;c1q and
the second couples the field to the charged particle charge-current density. For
a single point particle at space-time position £ moving with velocity v we have
3%(y) = cqd(z — y) and j(y) = qué(z — y) giving an interaction Lagrangian

Lint(z) = —qé(z) + qv - A(x)
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The total action is therefore
S = /dt {Lfield - Q¢+ qu - A + Lfree}

The variation of the action with respect to the A field components yields
Maxwell’s equations as before. However, the momentum p (2.6.33) is modified
by the interaction giving

p = mvy(v) + qA (2.6.35)

and the Lagrange equations of motion of the particle reduce to

%mv’y(’v) =¢q(E +v x B), (2.6.36)

in which the Lorentz force law appears on the right-hand side. Also
d o
Zme y(v)=qE -v (2.6.37)

showing that only electric fields do work on the charges and currents. However,
the Hamiltonian, which must be expresed in terms of the canonical momen-
tum, now takes the form

Hoin(p) = mc®y(v) = cy/m?c® + (p — gA)>. (2.6.38)

where the replacement of the free electron canonical momentum p by p — gA
is termed minimal substitution.

It is instructive to compare this with the elementary derivation from New-
ton’s second law. In the rest frame of a particle, the force is qF, the four-
velocity is v = (¢, 0) and the four-acceleration may be written dv/dr = (0, a),
so that ma = ¢F, where 7 is the particle’s proper time. Let G be the four-
vector whose components are given by

G — Lpi,
c

so that G* = (0, ¢ E) in the particle’s rest frame. So mdv/dr = G in the instan-

taneous rest frame, and because we are equating two four-vectors, this must

hold in every frame. The momentum is p* = mv* where the rest mass, m, is

constant and dp* /dr = q F"" v, /c. The equations of motion (2.6.36), (2.6.37)

follow after noting that dt/dr = v(v).

2.7 * Symmetries and local conservation laws
The derivation of Maxwell’s equations from (2.6.17) combined with ideas from

Appendix B.9.3 allow us to write down conservation equations for the Maxwell
field, both free and interacting with charged particles. The argument is the



104 2 Relativistic wave equations for free particles

same: we consider the effect of a change in the action due to infinitesimal
translations, rotations or Lorentz transformations as well as variations in the
field variables to deduce local conservation laws. We return to global conser-
vation issues in Section 2.8 below.

In Section 2.6.2 we saw that the variation in the Lagrangian due to varia-
tions in the fields a,, (2.6.22), involved a space-time integration over

aﬁpm alcem 8£em
0Lem =0 — =0 | = Oy | =———9 .
‘ e { day (8(6,,(1”))} " (6(81/“#) au)
The first term vanishes if the fields satisfy Maxwell’s equations, and when this
is the case, the local variation in the Lagrangian reduces to

a[-:em
= — . 2.7.1
e =00 (35 0) =

Different choices for da,, then generate different local conservation laws.
Suppose first that the variation da, is generated by an infinitesimal trans-
lation
=2 =x+eu

so that

ap(x) = au(2") = ayu(x + ew)

= a,(z) + da,(x) (2.7.2)
so that, to first order in e,
day, 2 v 2
day(z) =€ Be + O(€°) = eu” Oyau(x) + O(e”). (2.7.3)
€ e=0

Applying the same argument to Ly, (a,(z),a,(x)) to order e gives
0Lem = €u” Oy Lom(ay(x), au(x)) (2.7.4)

and equating this to (2.7.1), and using (2.7.3) we get

OLem
4 — _ =
€U {8p£em Oy <8(8yau)apa”>} 0.

Because u” is arbitrary, we see that

OLom CaN
(91, (a(auaﬂ)apau ) p‘cem) =0 (275)

which we can write as _
o,T"" = 0.

because 0Lem/0(0ua,) = €oF"P, the canonical energy-momentum tensor is
given by
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TH = egF" 8" a, — g" Lop. (2.7.6)

This definition of an energy-momentum tensor has several unpleasant features:
in particular it is unsymmetric in the indices p and v, and it is also gauge
dependent. A gauge transformation of the form a, — a, + 0,4 gives

TH — TH — g FH 0¥ 9, A = TH — e, (F**0" A)

since 0,F"? = 0. We have therefore to define an energy-momentum tensor
that is gauge invariant if we are to use it to calculate observable quantities.

The Lagrangian density is not completely determined by the equations of
motion; we can always add terms to the Lagrangian density, which, when inte-
grated over the whole domain D, can be converted to integrals on the bound-
ary 0D that vanish when suitable boundary conditions apply. The canonical
energy-momentum tensor can be modified in a rather similar way. Consider
a conserved current s*(x) with d,s"(z) = 0, and suppose a transformation
st(x) — s#(x) + As*(x). If the current is still locally conserved, then

Op Ast'(x) = 0.

At the same time, the total charge associated with s*(z) is Q = [ s%(z)d*z
and if this is to be unchanged, then

/Aso(x)dga: =0.
Both conditions are satisfied if As*(x) is a 4-divergence
Ast(z) = 9,5", SH = -8S"H,

where S*” depends locally on the fields. We can use this construction to add
a term to T*" of the form

ATH = 9,THPY,  THPY = TP,
It is clear that the choice
THPY = —egFHPa”

when added to the first term of (2.7.6) makes the whole expression gauge
invariant, so we now adopt the expression

1
T = Zeogﬂul«“oéﬁwﬁ + e F"FY, (2.7.7)

as the energy momentum tensor of the free Maxwell field; this is symmetric,
has zero trace, and is also conserved because 9, T}" = 0.

The Lagrangian for a conserved external current distribution coupled to
the Maxwell field, §2.6.2, is
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1 u 1 "
,Cem = _ZGOFNVF - Ej Ay, . (278)
The canonical energy-momentum tensor is
Ty wp v pv L wv :p
T :=1"? 0%a, — g Eem—l—gg jfa,

and we can construct a gauge invariant energy-momentum tensor for the cou-
pled system by writing

1
T =T 4+ = (¢"j%a, — j"a”). (2.7.9)
c
When the current does not vanish,
v 1 v
0, T = Ea,)a i (2.7.10)
so that
v 1 v af v L. v
OuTE" = 0uy 760 9" FapF" + P E)" 1 = —j, ™. (2.7.11)

which exhibits T} as the purely electromagnetic part of the energy momen-
tum tensor. Thus

1
T = 360 (E-E+ ¢’B - B) (2.7.12)
can be identified as the energy density of the electromagnetic field, and
T = eo ?eijE; By, i=1,2,3, (2.7.13)

known as the Poynting vector gives the energy flow.
Along with translations, it is also useful to consider infinitesimal Lorentz
transformations of the form

/
ot =t =2t fewt x”, wu = —wy.

In this case,
/ / v 1 voT voT vTOo
a’#(ir) - a’,u,(x ) = (5;1. + 56 b# wg7-> a,,(x)7 b# = _bH ,

and we obtain a canonical conserved rank three tensor, antisymmetric with
respect to the indices v and o,

JVUT = [voT 4 SVO'T’ aTJVO'T — 07 (2714)

where
LVUT :: xG'TVT _ xl/TO'T7
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voT .__ Aov T
S = €ob, T arFT!

The term S”?7 can be interpreted as a spin angular momentum density, whilst
L¥°T represents an orbital angular momentum density distribution. Note that
whilst J”?7 is conserved, neither S¥°" nor L”?7 are separately conserved; this
decomposition is not necessarily covariant or gauge invariant.
We can define a gauge invariant angular momentum tensor density from
T by writing
JYOT =TT — VI (2.7.15)
The symmetry of T} guarantees that this satisfies the conservation equation
0;J¥Y?T = 0. Similar arguments show that gauge transformations, which are
connected with conserved currents in interacting systems, for example the
coupling of Maxwell and charged particle fields also lead to conservation laws.

2.8 * (Global conservation laws

So far we have not specified the boundary 9D of the region of integration en-
visaged in forming the action. Consider first a family of space-like hyperplanes

o:={x|nfz, =71, nfn,=1}

labelled by 7. The normal n points to the future if n° > 0 and to the past if
n® < 0; for example in the simplest case, n = (1,0,0,0), n*z, = 2° = ct, so
that the hyperplane consists of all of R? at time 7/c. Dynamics is a matter of
relating field values on different hyperplanes. Suppose we calculate the action
in (2.6.17) for a region of Minkowski space D bounded by hyperplanes o1 and
02. Assume that the fields vanish sufficiently fast at spatial infinity so that
we can ignore any boundary effects. When the Maxwell fields satisfy the field
equations, (2.7.5) holds at each space-time point, and integrating over the
region D bounded by arbitrary hyperplanes ;1 and o9 gives

- OLom . \
0= /;ay ((()(&/Clu)apau ) pﬁem) d*z
= F(o3) — F(01) (2.8.1)

where

OLem ~
o 2 Y2 _ m
F(o) .—/J (6(5l,aﬂ)apa“ 0 pﬁem> do, —/JT do,

in which do, is the measure associated with the direction n” on o. For exam-
ple, if n is future-pointing along the 2%-axis, then the only non-zero component
is doy = dxz'dx?dx?, the usual integration over 3-dimensional volume. Because
01 and oy are arbitrary, we conclude that the four quantities

pr = / T do,, p=0,1,23, (28.2)
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are constants of the motion for the free Maxwell field. Similarly,
JH = / JMY doy, T = — JVH (2.8.3)

are also constants of the motion. We can replace v by T"* in (2.8.2) without
changing the result.

We can verify that (2.8.2) gives the same total momentum to the free field
as we should expect on elementary grounds by taking do, = (dz,0,0,0), so
that

pr= / Ty d*x
g
These are indeed constants of the motion, as from
0, T =0

we see that
doPH = / QT do = — / T do

The 3-divergence on the right may be converted, using Green’s theorem, to
a surface integral whose contribution, according to our assumptions, vanishes
in the absence of any charge-current sources. From (2.7.12) we see that

1
PO = / §eo(E-E+CQB-B)d3x

is the total energy associated with the field. When a current distribution is
present, we integrate (2.7.10) over a finite volume V with boundary 9V, giving

PO
d—+ P.dS= | j Edsz
dt

oV 14

where P = ¢¢?E x B = ug'E x B = E x H is the Poynting vector and
dS is the surface element on 0V. The surface integral often does not vanish
if V' is finite. The right hand side represents the energy dissipated in Joule
heating.

2.9 * Green’s functions

The notion of a Green’s function is used widely in physics and engineering [31].
Instead of dealing with an ordinary or partial differential equation with asso-
ciated initial and/or boundary conditions, we focus on an integral equation
whose kernel is the Green’s function for the problem. This section deals with
the construction of Green’s functions and the corresponding field operators,
or propagators, for the free Klein-Gordon, Maxwell, and Dirac equations.
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2.9.1 Nonrelativistic Green’s functions

For orientation, consider a simple nonrelativistic scattering problem with
Hamiltonian H(z) = Hy + V(x), Hy = p?/2m, x = (2°,x) (for convenience
we retain the relativistic notation 2% = ct), and V() is a smooth potential
having a finite range. The Schrodinger equation is then

(icdy — H) Y(z) = 0. (2.9.1)

Following Feynman [29, 32], we suppose that for times 2° > 2/° we can
formally write the solution as some linear superposition

B(2° — 2/ ) () = i / Gla,a') ¥(z') da’ (2.9.2)
in accordance with Huygens’ principle, where the Heaviside step function
1 s> 0,
O(s)=41/2 s=0,
0 s <0,

expresses our wish that there is no scattering at times earlier than z’°. Thus
the Green’s function G(z,z’) propagates the solution from the space-time
point z’ to the point z. Using the relation d(s) = 6’(s), where prime denotes
differentiation with respect to s, we see that

(icdp — H) O(x° — 2’ ) yp(2) = i/(ic@o — H)G(z,2")p(a") d>a’
=icd(x® — 2’ ) ()
from which we infer
(icdy — H) G(x,2') = 6 (z — 2'), (2.9.3)
with
G(z,2') =0, 2°<a'?

so that this is said to be a retarded Green’s function. Similarly, we can set
V(z) = 0 and express the solution of the free particle problem as

6(2® — 2/ 0) b(a) = i / Golz, ') (') d’ (2.9.4)

where
(icdy — Ho) Go(z — z') = 6™ (z — 2'), (2.9.5)
Go(x —a2') =0, 20<a’".
Here Gy depends only on the relative separation 2 — 2’ because the defining
equation is invariant with respect to translation.
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Now rewrite (2.9.1) in the form
(icdo — Ho) P(x) = V(z) ¢ ().

Using the free particle Green’s function, we replace this by the integral equa-
tion

V() = d(z) +1i / Go(z — ') V(') y(2)d"a, (2.9.6)

where ¢(x) satisfies (i0y — Ho)¢(x) = 0. A similar procedure applied to the
differential equation

(icdy — Ho) G(x,2") = c6W (z — ') + V(z) G(x, 2)

gives the Lippmann-Schwinger integral equation
G(z,2') = Go(z — 2') + /G’O(x — 2V (2")G(z", ") d*z". (2.9.7)

when the interaction is subject to the appropriate boundary conditions as
in (2.9.6). Equations (2.9.6) and (2.9.7) can formally be solved by iteration.
Thus, if G*) is the k-th approximation, with G(©) = Gy, then we obtain a
sequence of approximations of which the first two are

GV (z,2") = Go(x — 2') + /Go(ac —x1)V(xy) Golzy —2') d*ay
G (z,2") = Go(x — 2') + /Go(m — )V (x1) GV (xy,2") d*a
— Gz — ) + /Go(a: eV (1) Golwn, o) dim
+ // Go(z — 1)V (21) Go(x1 — 22)V (22) Go(xa — 2') d*xy d .

Thus G (2, 2') is the sum of two terms: in the first, particles propagate freely
from z’ to x without scattering; in the second, we sum over all possible events
in which the particle propagates freely from z’ to x; where it is scattered by
the potential V(z1), and then the scattered particle propagates freely from x4
to x. Similarly G®(z,z’) contains beside these terms, a further contribution
from double scattering. The k-th iterate will include terms with up to k-
fold scattering by the potential, and we can regard the formal expansion,
G=GO + G0 4+ G 4 asa perturbation series.
To construct the free particle Green’s function for this problem consider

Golz —2') = / (gjr’;eik'(”” G(k), (2.9.8)

where k = (z/c,k). The Hamiltonian is Hy = —V?/2m so that, provided
differentiation under the integral sign is permissible,
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(icdy — Ho)Go(x — 2') = / (Z:; (z — K*/2m) e~ F @2 G (k)

= 6@ (z —2')

by (2.9.5). Because

5(4) (.’13 _ J}/) _ / (;4];46—”6'(1'—.%/)’
™

we conclude that 1
G(k) = (= — K*/2m) .

It follows that

/ d*k —ik-(z—a') 2 .\ 1
Go(z —12') = (271)46 (z — k°/2m + ie)

where the term e, € > 0 has been introduced into the denominator to ensure
that Go(z — ') is non-zero only when xz° > 2/°, in line with the integral

representation
1 oS} de—iws
= — — 1'
0(s) = =5 Im /_Oo L
Thus
BE . / d ) , _
Go(r —2') = / e oik-(@—x) /%eﬂz(pt ) (z B k2/2m " ie) 1
3k )
= —ib(t —t’)/ @np &P (ik - (x — ') — ik*(t — ') /2m)
T
Because

V() = (20)Y2 explik - @ — k>t /2m), / bpo(@) ¥ () d% = 6 (ks — k)
is an eigenfunction of the Schrédinger equation,
(icdo — Ho)yp = 0,
we can conclude that
Gol —a') = —i(t — ) / @k (1), (o). (2.9.9)

More generally, if a Hamiltonian H has normalized eigenstates ¢, (x,t)
satisfying a completeness relation of the form

D dal@ (@ t) =% (@ — )
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where the formal sum over a runs over all point and continuous spectra, then
the Green’s function

G(z,2') = —if(t - t') Z Yo (z) Vi (2)),

satisfies (icdp — H)G(z,z') = 6™ (x — 2'). Using this representation, it follows
that

i/d%’ Gla, 'Y (a') = O(t — ') ()

so that G(z,z') propagates the state 1, forwards in time. Equally

i / B 93 (2)G x, 2') = 0t — )i (2)

so that the complex conjugate states are propagated backwards in time

2.9.2 Klein-Gordon operator

The Klein-Gordon equation provides a useful introduction to the construction
of Green’s functions for relativistic equations. We wish to solve the equation

(O +m?c?) ¢(z) = F(z) (2.9.10)

where F'(z) is some source term. If, as in (2.9.8), we assume that there exists
a Green’s function of the form

4 ’
Az —2') = / %de‘ik'(’;” ) K (k), (2.9.11)

an argument along the lines of the previous section leads to
(=k*+m*c®) K(k) =1,

so that )

The denominator vanishes on the surface k2 = (k%)% — k? = m2¢? in 4-space;
for finite mass m this is a two-sheet hyperboloid, degenerating to the light
cone k? = 0 for m = 0. It is useful to regard the expression (2.9.11) as an
integral over the three degrees of freedom of the space-like components k and a
contour integral over the time-like component kg, choosing paths which avoid

the poles at kg = +v/k* + m2¢2. Thus

A(Z)Z—/dgk exp{ikz~z}/cdkoe}q){_ikozo}

(2m)3 2 ki — w?

2
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TN
SR

Fig. 2.1. Contour C for A(z), equation (2.9.13).

where z = (2°, 2), w = +Vk* + m2¢2 and C is some path in the ko-plane. The
boundary conditions which determine the way in which this kernel propagates
solutions of the Klein-Gordon equation can be used to select the appropriate
path C. We look first at the simple closed contour of Fig. 2.1, C, taken in the
positive sense and surrounding both poles kg = £w. Then

Ale) = —— / S (2.9.13)
t)= (2m)4 Jo k2 — m2c2 o
which is equivalent to
Alz) = — (22)3 /d4k e(ko) 6(k* — m?c?) e~ h® (2.9.14)
T
3
- (2717)3/ %sinkoxo exp{ik - x} (2.9.15)
w>0

where €(s) is the sign of s, and we have used

0(ko —w) — d(ko + w)
2[kol

(ko) 6(k* —m?c?) = (2.9.16)

It is straightforward to show that A(z) is invariant under Lorentz transfor-
mations,

A(Az) = A(x)
and that it is an odd function of =z,
Ax) = —A(—x) (2.9.17)
as well as being a solution of the Klein-Gordon equation
(O 4+ m?*c?) A(z) = 0. (2.9.18)

Because A(x) is invariant, it must be a function of the single invariant argu-
ment 22 when 22 < 0 (z space-like), and of the invariant arguments z? and
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(%) when 22 > 0, (x time-like). Outside the light cone, 22 < 0, there is some
function f such that A(z) = f(2?) then A(z) = A(—x) which, with (2.9.17),
implies A(x) = 0. Inside the light cone, we can satisfy the conditions with an
expression of the form A(x) = e(2°) g(2?) for some function g, and then

A0, z) = 0. (2.9.19)

Finally, if we differentiate (2.9.15) with respect to 2° under the integral sign,

we get
(agx(‘:f)lozo = O () (2.9.20)

The properties expressed by (2.9.18)-(2.9.20) enable us to use A(x) to
solve the Cauchy problem for the Klein-Gordon equation. Let F,(x) be any
function that vanishes as || — oo. We apply Green’s theorem

/, F,(2')do"(z') — /U 0 E,(z')do" (z / &, Fy(a')d*a’

to the space-time region {2 bounded by the space-like surfaces oy and o.
Let ¥(x) be a wave-packet solution of the Klein-Gordon equation such that
¥ (z) = Yo(x) and n*90,¥s(x), where n# is the normal on oy, are given on oy.
Now choose

Fu(z') = Az — 2') 9, W (") — 0/, A(x — 2") W(a').
Because A(z — ') and ¥(z) are both solutions of the Klein-Gordon equation,
O*F,(x)=0

in 2. Take 0o to be a hyperplane 2° = 2/% n#(x) = (1,0,0,0), and apply
(2.9.19) and (2.9.20), giving

T) = / {A(z — ) 9, Wy(x") — 0, Az — 2') Wo(z')} do ('

where 20 > 2/ %, Equation (2.9.16) shows that A(z) can be decomposed into
positive and negative frequency parts by writing

Az) = AP () + A5 (z) (2.9.21)
where )
A () = (2;’)3 /k (k) ', (2.9.22)
0>
A (z) = (;:) /k Oe‘i’”é(/c2—m2c2) d*k. (2.9.23)
0<

in which we have assumed kg to be real. We can replace these expressions by
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—Ww
<« +w » +w
\ / 2 <0 C_

Fig. 2.2. Contours C4, (2.9.24), and C_, (2.9.25).

Fig. 2.3. Feynman contour for causal Green’s function.

1 efik-a: .
AN (z) = — @) /C g (2.9.24)
+

valid only for z° > 0, and

—zk T

() (z) =
A (x) 277 / o d (2.9.25)

valid only for 2° < 0, where C; encircles the single pole +w and C_ encircles
the single pole —w once in the positive sense. The Feynman propagator, which
propagates positive frequency amplitudes (associated with particles) forward
in time and negative frequency amplitudes (associated with anti-particles)
backward in time, is defined by

(2.9.26)

Ap(x) +2iAH) (2) for 29 > 0
xTr) =
r ~2iA) (z) for 29 < 0

Its contour integral representation is
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A 2 efik-m 4
(@) = Gyt | e O (2.9.27)

where the path Cp passes below —w along ky < 0 and above 4w along kg > 0.
The path can be deformed onto the real kg-axis if we displace the poles so
that they occur at +(w — i€), where € > 0 is infinitesimal.

2.9.3 Maxwell’s equations: the zero-mass case
Our discussion of the covariant form of Maxwell’s equations in §2.6.1 led to

the equation

Oa* — 9*(d,a”) = Tlcjﬂ' (2.9.28)
0

for the four-potential (2.6.13) in terms of the generating currents, for which
the associated Green’s function D, (z) must generate solutions of the form

at(r) = %/DW(CE —a')j" (") d*a’ (2.9.29)

in coordinate space. It is convenient to write

D) = [ Gy Dunth)

The most general second rank 4-tensor D, (k) that we may construct without
imposing particular constraints will have the form

0Dy (k) = gy D(K?) + ke, DY (K?) (2.9.30)
The requirement of current conservation, d,j* = 0, becomes
kuj" =0
in momentum space, so that a replacement of the form
Dy (k) = Dy (k) + kpuxo + Xuky (2.9.31)

in (2.9.30), where x, is an arbitrary four-vector, leaves the four-potential
unchanged. For the same reason, the form of D™ (k?) does not affect the
four-potential, so that the choice of x, and of DM (k?) together fixes the
gauge. From §2.9.2, the simplest choice, the so-called Feynman gauge, is to
take DM (k?) = 0 and to take the zero-mass limit of (2.9.12), giving

G 1
DE (k) = —Z&~ 2.9.32
L (K) o K21 ic ( )

In this case, a* satisfies the Lorentz condition, because
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/8“ (@ —a')j"(2") d*s" =0

so that k*D,,(k)j" (k) = 0 for a conserved current. The Landau gauge

; 1 Kok
D;uj(kl) = _€Ok2 uv — 22 ) (2933)

for which k“Dﬁy(k) = 0, is also useful. We shall make extensive use of the

(non-covariant) Coulomb gauge, for which

= kM /2k2 k|, (2.9.34)

giving

1 1 kik;
DSy (k) = TR D (k) = e {%« - I;I; , } . i =1,2,3, (2.9.35)
whilst Dy, (k) = D;o(k) = 0. Whilst the lack of covariance will be inconvenient
if we need to compare solutions in different reference frames, most calculations
of atomic and molecular properties fix the coordinate frame at the outset.
We shall need to take this into account at a later stage. From (2.9.29) and
(2.9.35), we see that the Coulomb gauge splits the four-potential into a scalar
potential depending only on the v = 0 component of j¥(z'), the charge density,
and a vector potential depending only on the 3-current vector. In coordinate
representation, we see that

1 e~k 5($0)
c _ 4 _
Doo() = (27)%*€o /d b k]2 4meo|z|’ (2:9:36)

which is just the Coulomb interaction kernel, acting instantaneously.
To calculate the kernels Dg (2), it is useful first to consider the Feynman
kernel,

1 d*k
(27r)460 k2 + ie

B o 1 3 zk.’B
/dze “(2m)3¢€ /d K |[k|? — 22 — ie

where we have written kg = z. Because the space-like integrand is spherically
symmetric, apart from the exponential numerator, we can take x along the
z-axis, and integrate over the azimuthal coordinate, giving

3 ik.x +1 2
/ dk e’ __ /OO 1 . / gy k*dk
(2m)3€p k2 — 22 —ie o kZ—22—ie ) 4 (27)2%¢

: o ikr
—i 1 / _e"kdk (2.9.38)
(27r) €T k2 — 22 — e

DF (z) = e ke (2.9.37)

ez\z\r

dmegr’
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where we have used symmetry to extend the range of integration to the whole
real line, and only the pole at k = (|z] + i€) contributes. Hence

d —izal+i|z|r
DFzy= [ &2 (2.9.39)

~ ) o dmegr
This calculation also gives immediately the term proportional to d;; in
(2.9.35). A similar construction, using
(%ﬁjeik'm _ —kikjeik'm,
leads to
dz o ei|z|r ei|z|r -1
Df(x)=— [ e {6 —— + 0,0 ——— 2.9.40
(@) /271' ¢ { T Ameqr + 0% 4megr |z|2} ( )

This propagator introduces retardation effects arising from the finite speed of
propagation of electromagnetic signals. For light elements, it is often a good
approximation to assume that only long wavelength photons, in the sense that
|zr| < 1, lead to measurable effects. In this case (2.9.40) gives

: C 0 —izx v 9.
llr% Dii(x) = ol : {r 2516% r}

G {5ij+<v;§j} (2.9.41)

8megr

in which there is no time-dependence. This long wavelength approximation
yields an interaction potential first derived by Breit [33].

2.9.4 Free-particle Dirac equation

Green’s functions for the Dirac operator are matrix-valued and exist in similar
forms to the Green’s functions A, AH), A=) and Ap already encountered.
Corresponding to the causal propagator (2.9.27), for example, we have

Sr(x) = —(v"pu + me) Ap(x)

2 Ykt me ke
- /CF e e (2.9.42)

which satisfies the equation
(Ypu —me) Sp(z — ') = —2i 5@ (x —a') (2.9.43)

where p,, = i0,, = i0/0z". In many applications, it is useful to separate out
the time dependence by writing

Sp(x—2') = L dz Gz, x'; 2)yg e @) e, (2.9.44)

iy Cr



References 119
Substituting into (2.9.43) and using
yHp, —me =~"(i0y — H/e), H=ca-p+ Bmc*

and
Ypu +me = (idy + H/c) 70

we find, using (2.9.42), that

+H A3k oik.x
G, a';2) = = /
(@,2;2) c (2m)3 k2 — p2? — e
z+ H PR

= 2.9.45
c 4R ( )

where R = |z — 2’|, p? = 22 — m?c?, and
(H —2) Gz, z) = c6® (x — 2'). (2.9.46)

As in the Klein-Gordon case, this is exactly what is required in QED to ensure
that the theory incorporates the correct boundary conditions to describe the
motions of both positrons and electrons.
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3

The Dirac Equation

The solutions of the Dirac equation for the free electron and for hydrogenic
atoms with stationary nuclei are primary building blocks for calculations on
more complex many-electron systems. Section 3.1 introduces many useful no-
tions, including plane wave solutions, the bilinear covariant expressions repre-
senting physical quantities such as the electron charge-current density, along
with energy and spin projection operators. Charge conjugation relates electron
and positron solutions. The separation of angular and radial amplitudes of cen-
tral field Dirac spinors is explained in detail, permitting solution of the radial
equations for bound and continuum states. Applications include relativistic
Coulomb scattering and relativistic quantum defect theory. We show how to
construct partial wave Green’s functions for the free and for hydrogenic Dirac
electrons and sum the partial wave expansion for the free electron. Finally, we
discuss the nonrelativistic limit and approximate relativistic Hamiltonians.

Supplementary material on relativistic notation (§A.1), Dirac matrices
(§A.2), the properties of spherical Bessel functions (§A.3.1), confluent hyper-
geometric functions (§A.3.2), and frequently used properties of central field
Dirac orbitals (§A.4) has been collected in the appendices.

3.1 Free particles

The form of Dirac’s equation for free particles, (2.5.7), which is most conve-
nient for demonstrating the relativistic covariance properties, is

{v*p, —mc}yp =0, (3.1.1)
where the 4 x 4 v* matrices have the property (2.5.8)
{7} = 29" s (3.1.2)

in particular '
(V) =~L, (") =1y (3.1.3)
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The p = 0 matrix is therefore Hermitian, whilst the remainder are anti-
Hermitian. We shall use the representation (2.5.11) in terms of Pauli matrices

0 __ IO i O O'i
~ _<OI =i ) (3.1.4)

. 07
7" =75 = iy"7'?y® = (1 o) : (3.1.5)

and define

It follows that

()P =1, {¥°+} =0, p=0,1,23. (3.1.6)

3.1.1 Properties of Dirac matrices

Any 4 x 4 matrix can be represented as a linear combination of 16 linearly
independent matrices generated by the four v-matrices, forming what is known
as a Clifford algebra. The 16 matrices, I'*, so generated are conventionally
represented as follows

rs. i, Scalar 1 matrix
r ;Y S Y Vector 4 matrices
FEV: O = % [Yus7w] Antisymmetric tensor 6 matrices
Ff: V5V Pseudovector 4 matrices
I'P: s Pseudoscalar 1 matrix

The reason for labelling these matrices as scalar, vector, tensor, pseudovector,
and pseudoscalar is explained in §3.1.3. Their main properties are

1. (I')? = £14.

2. For any I'* (I"* # I'® = I;) we can find I’ such that {I"*,I"*} = 0.

3. For any I'*, I'® with a # b, we can find a number n = +1,4+i and a I
such that I'*I"® = nI'¢, where I'° # ' = I.

We deduce first of all that the trace of each matrix I'* # I'¥ = I, vanishes.

For tr I'* = tr [['*(I'*)?] = —tr [['°I'°I"®], using property 2. Because the
trace of a product of matrices is invariant under cyclic permutation, this
gives tr I'* = —tr [(I"*)2I"*] = —tr I'%, so that tr I'® vanishes. The linear

independence of the I'* now follows; the equation
Z cal*=0
a

holds if and only if ¢, = 0 for all a. (Multiply from the left by, say, I and
take the trace to conclude that ¢, = 0). A table of properties of Dirac matrices
will be found in Appendix A.2.
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3.1.2 Covariance properties

A Lorentz or Poincaré transformation from one inertial frame of reference to
another preserves the form of Dirac’s equation: in other words

(iw‘; - mc) W(x) =0 (3.1.7)

transforms into

0
iy _ Tl —
(Zh’y E mc) P'(2')=0 (3.1.8)
under the inhomogeneous Lorentz (Poincaré) transformation (2.3.1)
r— 1 = Az +a. (3.1.9)

The invariance with respect to translation x — z’ = x + a is obvious, so we
can set @ = 0 and restrict the discussion to pure Lorentz transformations. We
assume a relation

Y (a") = S(A)(x) (3.1.10)

where S(A) is a nonsingular 4 x 4 matrix. The relation between ¢ and v’
is then a local one so that an observer in the new frame can immediately
construct ¢’ when given . Substituting in (3.1.8) gives

ihiyt E S(A)(x) —meS(A)(z) = 0.
From (3.1.9),
g  0z¥ 0 — (A 0
ox'm — Ox'm Jav " oz
so that

S S(A)Y(a) — meS(A)(z) =0,

and S(A) is characterized by

ih’)’“(/l_l)uu

S(A)*STHA) = (A1) 7. (3.1.11)
The next step is to construct S(A); for an infinitesimal Lorentz transfor-

mation
AMU — guy + wll«y 4+, Wpy = —Wyp, (3112)

the corresponding transformation matrix is
1 )
S(A)=1- iaww“” +oe, STH A =T+ ZU’“’WW +-
where 0, = —0,,,. Substituting in (3.1.11), we find that

[7”7 Uup] = 2i(g", Yo — g”p ’Yu)
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which is satisfied if we set )
i
Ovp = 5['Yua7p]~
From this, we can derive a finite transformation of the form
S(A) = e /D™ (3.1.13)

where wy,,, is now finite, rather than infinitesimal, and antisymmetric in the
indices p and v. Thus S(A) is unitary for real rotations in R?, and Hermitian
for Lorentz boosts. Equation (3.1.10) may also be written

Y/ (z) = S(A)Y(A ) (3.1.14)

so that
P (z) = (I — %.o'm/ w“”) (2P — WP o)
= (I - %aw wt + xwﬂ“’@,,) ¥(z) + o(wh”)
= <I - %w‘“’ JW) P(x) + o(wh”)
where the infinitesimal generator
Juw =1 (0, — 2,0,) + %Uuw (3.1.15)

can be recognised as the quantum mechanical total angular momentum oper-
ator.
The Poincaré algebra, §2.3, contains the infinitesimal generators

1 1
P,=10,, W,= —§EWWJ””PU = iewpgoy”P”, (3.1.16)
which are important in determining the irreducible representations. Their
scalar product vanishes,
w,P" =0,

and
Wy, P, =0, Wy, W] = —i€pnpe WPP?.

Because the operators P - P and W - W commute with every operator of
the group they can be used to label the irreducible representations. Now by
operating on (2.5.7) from the left with v*p, + me, we see that

PPy =—-0¢ =m*y

for any solution ? of Dirac’s equation, so that the rest mass m of the particle
is one of the labels required. We can evaluate the other label in any convenient
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inertial frame, in particular the one in which PY takes the value mc/h and
the space-like components P* vanish. In this frame, equation (3.1.16) takes
the values

W, = me(0, s)
where s is defined in terms of the Pauli matrices as
1 .
S; = 50'2‘7 1= 1,2,3.

Thus 3
W - Wi = —m2c?s?y = —1m202w,

verifying that a Dirac particle has an intrinsic spin of %

3.1.3 Bilinear covariants
We define the Dirac adjoint ¥(x) by
B(a) = ¥ (o), (3.1.17)

where 1T (z) is the Hermitean conjugate of ¥ (x).! From (3.1.10) we see that,
under a Lorentz transformation,

P’ (') = P(a)r"S(A)T°
= (x)S(A), (3.1.18)

where the last line follows by use of the explicit form (3.1.13). Then a bilinear
expression of the form

¥(x)AY(z),
where A is any 4 X 4 matrix, transforms so that
¥ (a")AY' () = P (2)STH(A)AS(A)(x).

As a specific example, we defined the density (2.5.2) and the probability
current (2.5.3) as the components of a conserved charge-current four-vector
J*, with

i =%4), P’le=p=v", j=vlcay;

in terms of the Dirac adjoint, this can be written

§* = P(z) eyt (). (3.1.19)

Because (3.1.11)
STHANWS(A) = A"y,

! We remind the reader that ' (z) is a 4-column row vector whose elements are
the complex conjugates of the elements of the 4-row column vector 9 (z).
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we see that

Ja") =9 (@) ey (2f) = A 57 (2),
verifying that j#(z) transforms like a four-vector as previously asserted. Sim-
ilarly, by taking A as the identity matrix, we find that ¥ (x)y(x) is a scalar
density. These two quantities are examples of bilinear covariants that can be
constructed from expressions of the form 1 (x) A (z), where A is one of the I’
operators listed in Section 3.1.1. Thus the effect of a Lorentz transformation
is represented by

8¢ TP (@) g (@) = Y(@)PP(x),

Ve /(@) (TV)R ' (a') = At (@) (TV)" (@),

T: 9/ (2") (IT) ! (2) = A, A 5 () (TT)P7 3 (x),

A (@) (DAY ! (a) = det(A) Ay () (IH)7 (),
P 9@ PP (a) = det(4) ¥(z) I'T (),

justifying identifying these combinations as scalar (S), vector (V), antisym-
metric second rank tensor (T), axial- (or pseudo)-vector (A), and pseudoscalar
(P). The last two change sign under inversions, for which det(A4) = —1. The
bilinear covariants, in particular j#, represent observable quantities with well
defined properties under Lorentz transformations, which are needed to con-
struct coupling of the Dirac field to other fields. For example, the minimal cou-
pling to the Maxwell field, used to study the motion of a test charge in Section
2.6.4, involves the invariant interaction j#A,,, where A, is the 4-potential.

3.1.4 Plane wave solutions

The equation (3.1.1)
(thy"0, —me)yp =0

has plane wave solutions

Y(x) = e =Py (p); (3.1.20)
the exponential has the invariant exponent

z-p=a"py—x-p=1tE(p) —x-p
where E(|p|) = cpo is the energy, and the (4-component) spinor u(p) satisfies
(p—me)u(p) =0, P:=~.0" (3.1.21)

Multiplying from the left by ¥+ mc and using (2.5.8) we see that

(p* —m*c*) u(p) =0 (3.1.22)

verifying that p# is the particle’s 4-momentum. The energy is £ F(|p|), where
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E(|p|) = cpo = +v/m?c? + p2. (3.1.23)

We therefore have (particle) solutions with positive energy and positive fre-
quency w = E(|p|)/h and (antiparticle) solutions with negative energy and
negative frequency w = —E(|p|)/h.

The solutions in an arbitrary inertial reference frame can be obtained
directly from the partitioned form of (3.1.21),

(2,7 DB ) ) =

g-p —mc — Po

There are two linearly independent solutions for positive energies, p® > 0 and
two for negative energies, p° < 0. Writing

we have, when p° > 0,

2\ 1/2 o"
ut"(p) = ( ZUP) +me? co-p r=1,2, (3.1.24)
2E(|pl) "
E(|p|) +me?
and, when p® < 0,
o\1/2 [ _—CTP
v (p) = (EUPDW) Biph+me? | ro12 (3125
2E(|p|) o

The Lorentz invariant normalization has been chosen so that the solutions
form an orthonormal set,

@ (p) ul® (p) =7 (p) v (p) = b5
™ (p) v (p) =7 (p) u*) (p) = 0.

We also see that if we write p = (E(|p|)/c, p), then u(")(p),v(*)(p) satisfy
respectively

(F—me)u(p) =0, (= p—mep®(p)=0 (3.1.26)

The probability current-density 4-vector associated with the spinor wave func-
tion ¢(x) is jH(x) = eyt . Writing

) — =i p/hy () () () = Fien/hy(s) ()

gives
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_ H
T DOy (D) — 70 (p) eyt (p) = 70 (p) % u (p)

”w
=25, (3.1.27)
m

where the first step follows from (3.1.21) and the second from (2.5.8). From
elementary relativistic mechanics, a particle with rest mass m and velocity v
has velocity 4-vector

VE = pt/m =~(v)(c,v), () =1/y/1—0v2/c2

so that (3.1.27) agrees with the classical result.
A similar argument for the negative energy (negative frequency) plane
wave states gives

. I
B () gyt () — _%%_ (3.1.28)

This time, all the momentum components are reversed: the particles appear to
be going backwards! However, because the energy is negative in (3.1.28), the
probability density, p = j°/c, remains positive for both positive and negative
energy states.

3.1.5 Energy and spin projectors

The plane wave solutions of Dirac’s equation can be divided into disjoint
sets according to the sign of the energy. From (3.1.26), we can construct the
orthogonal projection operators A (p), A_(p) onto the positive and negative
energy manifolds:

A =" E S i p) 7 p) (3.1.29)
A ) =" S ) 27 ), (3.1.50)

where if @ and b are respectively a 4-spinor with components a; and an adjoint
(row) 4-spinor with components b}, then the 4 x 4 matrix a ® b has matrix

elements (a ® b);; = a; bi. The projectors satisfy

Ay(p)+A_(p) =1 (3.1.31)
A (p) A-(p) = A—(p) A+(p) =0
TrAy(p) =2

The irreducible representations of the Poincaré group can be characterized
by the invariants C; = P - P and Cy; = w - w, §2.3, which we can use to
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classify the plane wave solutions. Let n be any space-like four-vector satisfying
n-p = 0 and normalized so that n-n = —1. From (3.1.16) we see that

_ 1 VPO : _ 1
w-n = 7€u0nt0"’p?, which reduces to w-n = —3575 7% p. We have already

seen that, in the rest frame,

me
Wy = 7((),2)

5 (32)

so that, if n = n(® = (0,0,0, 1) is directed along the z-axis,

where

w-n® = —%23.

Thus, in the rest frame, solutions are eigenstates of —w - n(3) /me = w?/me
corresponding to eigenvalues +1 (spin-up) for v, v and — 2 (spin-down)
for u® v,

When n is a space-like unit vector, n-n = —1,

P(n) = %(1 4+ #), P23(n)= P(n), P(n)P(—n)=0. (3.1.32)

is a projection operator. When n = n®®),

P = S @) = 3|17 O,
so that
P(nuM (me, 0) = uM (me, 0),
P(n*v® (me,0) = v® (me, 0),
P(—n*)u® (me, 0) = u® (me, 0),
P(—n*)v™ (me, 0) = vV (me, 0),

corresponding respectively to spin projections +31 for u! and v' and —31 for

u? and v2. Making a Lorentz transformation to a frame in which the parti-
cle has 3-momentum p, the states u(")(mc, 0),v(*) (me,0) become the states
u(") (p),v*) (p) which are also eigenstates of —w-n/me, where n is the Lorentz
transform of n(3). Thus for any space-like vector n with n-p = 0, P(n) projects
onto positive energy states that have spin X' - n = +% and negative energy
states that have spin X - n = f% in the rest frame.

We can also choose n = (p°, p)/mec so that its space part n is parallel to

the 3-momentum vector p; then

P(n)A+(p) = (I + if’) A4 (p),
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defining the helicity representation.
Tt is usual to write the eigenvectors of P(n) as u(p,n) for positive energy
and v(p,n) for negative energy states, so that
P(n)u(p,n) = u(p,n), P(—n)v(p,n) = v(p,n).
The relations
[A+(p), P(n)] =0,
A4 (p)P(n) + A_(p)P(n) + Ay (p)P(—n) + A_(p)P(—n) = I,

TrAy(p)P(£n) =1

enable us to classify the set of plane wave solutions in terms of spin polariza-
tion and 4-momentum together.

3.1.6 Charge conjugation

Minimal coupling to an external electromagnetic field, §2.5.5, replaces p,, by
n

o
{1, —me}yp =0,

which we can decompose into

{in* 0, — metp = %’y“au P, (3.1.33)

in which the motion of the charged particle is driven by the interaction term

on the right hand side. There exists a charge conjugate spinor, ¥, = C @i
which satisfies (3.1.33) but with the sign of ¢ reversed,

{in" 0y — metipe = —% Yay, . (3.1.34)

Recall that 1) = 91", where the dagger denotes Hermitian conjugation. The
Dirac conjugate of (3.1.33) is

—i(0, )" — mep = = Yytay,

oI

and taking the matrix transpose gives

(iv"'0, + me) . = —% At aﬂﬂt.

The charge conjugation matrizc
2
C =iy’ = —iocl @ 0? = (_. 5 0)’ (3.1.35)

has the property, Appendix A.2,
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,Y/Lt — —C_l’)/ﬂc,
from which (3.1.34) follows, and

0 —io?

¢chti72¢*( 5 0>w*. (3.1.36)

It is instructive to apply the charge conjugation transformation to the
plane wave states (3.1.20). Complex conjugation maps exp (—ip-x) into
exp (+ip - ). Effectively this transforms p — —p; the 3-momentum is re-
versed, and positive frequency oscillations become negative frequency and
vice versa. The spinor amplitudes (3.1.24) and (3.1.25) are both real, so we
have only to operate on them with C. The result is simple in the particle’s

rest frame, in which
" (¢ ) (0
= (7) = (0)

Since i0? ¢! = —¢? and ic? ¢? = +¢', we find
WD 5@ @ M 4 @ @ )
so that when p = (me, 0,0, 0),
wng)(l) — w(*)@)’ ¢£+)(2) — fw(*)(l)’
wgf)(l) — 1/)(+)(2)’ 1%7)(2) — _¢(+)(1).

It follows that, for a particle at rest, charge conjugation maps positive energy
states onto the corresponding negative energy states and flips the spin.
The expectation values of operators O are derived from

(0) :/Jowd% (3.1.37)

Substituting 1. for ¥ and manipulating the resulting expression gives

<O>c:/ac0wcd3-r:*<720*72>*, (3138)
from which we deduce the following correspondences:

(zh)e=(2"), (p")e=—(p"), (")e={3"), (B)e=—(B)
<2>c:7<2> <L>c:7<L> <J>c:7<J>
where J = L + %2.
Equation (3.1.33) can be put into the Schrédinger form, (2.5.33),

0P

io; ={co (p—qA) + fmc® + @} o,
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which enables us to identify the corresponding Dirac Hamiltonian

Hp(q) = ca - (p — qA) + fmc* + q¢ (3.1.39)
The charge conjugation rules now give

(Hp(—q))e = —(Hp(+4q) ), (3.1.40)

connecting the negative energy states of a Dirac particle with the correspond-
ing positive energy states of its anti-particle.

3.2 Spherical symmetry

Dirac’s equation for a particle in a spherically symmetric scalar potential can
be obtained from (3.1.39) by setting A = 0 and writing ¢® = V(r), where
r = |z| is the distance from the origin of coordinates in R3, so that

L O 2

zha = {ca-p+ fmc* + V(r) . (3.2.1)
This equation is the starting point for much of the theory of atomic and
molecular structure, so that we shall need a thorough understanding of its
properties. We first look for stationary states of the form

U(z) = e P ()
so that F will be an eigenvalue of the Dirac Hamiltonian
H¢(x) = {ca-p+ pmc® + V(r)}o(x) = E ¢(x). (3.2.2)

The Hamiltonian is only invariant under rotations and space-like reflections.
The infinitesimal generators of rotations are the components of J = L + S,
where S = % Y. so that we expect to be able to characterize the eigenstates
in the usual way by the eigenvalues of J? and Js. By elementary algebra, we
find 8% = %LL, so that S? is a multiple of the identity and therefore commutes
with H. Finally, the operator

P=pP, Pf(x)=f(-=) (3.2.3)

also commutes with H, and so its eigenvalues are also constants of the mo-
tion. We shall use lower case letters j,l, s to denote the angular momentum
operators on a 2-spinor space.

In a spherical polar coordinate system, (r, 6, ), eigenstates of (3.2.2) have
the 4-spinor structure

é(x) = % (.P(T)X’“”’"(ef) ) (3.2.4)
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The spin-angle 2-spinors X .m (6, ) are eigenfunctions of 5% and js, belonging
to a (2j 4+ 1)-dimensional irreducible representation of SO(3), so that

3 Xkm (0:0) = G0 + DB Xem (0,9), Xm0, 0) = mh Xum (0, 0), (3.2.5)
where m = —j,—j +1,...,4, j = %, %, %, ... Xmm 1s also an eigenfunction
of 1% with eigenvalue I(I 4+ 1)h? where [ can take the values j +1/2 or j —1/2.
The cleanest classification depends on the relation

KXNm (97 90) = KJXHm(07 So)u (326)

where
K=-[1+-1P-8=-(1+40c-10), (3.2.7)

so that the notation
1
k=(G+1/2)n Whenl:j—|—§777 n==+1,

enables us to track which coupling of I and s is involved. The conventions used
in labelling Dirac 4-spinors in spherical symmetry are given in Table A.1.

3.2.1 Angular structure

We construct spin-angular functions by diagonalizing the product representa-
tion DO x D(1/2) in the usual way using the the Clebsch-Gordon decomposi-
tion

DO p/2) — p+1/2) g p-1/2)

The representation D(1/2) is two-dimensional; we can choose a basis of eigen-
vectors of s2 and s3, where s = %a‘, namely

172 = <(1)> s o1 = ((1)) )
1

s2¢a:§¢aa 83¢U:U¢U7 g::l:§

The representation DU is (21 + 1)-dimensional; its basis vectors can be taken
to be the spherical harmonics

so that

{lem(97<p> |m: 7lafl+17~'~7l}7
so that

2Y™(0,9) = U1+ 1) Y,™(0, ),
LY™(0,0) =mY™ (0, )
1:Y"(0,0) = [1(1+ 1) — m(m + 1)]'2Y"=1(0, ).
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The spherical harmonics, defined in (B.3.23), with the required phase conven-
tions are given by

- 24+1\"*
Y, (0,@:( ) (6, )

47

EIPTE RV ‘
cm(o, p) = (—1)™ [M] Pr0)e™ if m>0  (3.2.8)
Cr™(0,9) = (=1)"C" (6, 0)".

Basis functions for the representations PU) with j = [ + % can now be con-
structed from sums of products of the form?

Xem(0,0) =Y (Lm —0,1/2,0[1,1/2,5,m) " "7 (0,0)d5  (3.2.9)

o

where | = j + %77, n = sgn k. Inserting explicit expressions for the Clebsch-
Gordon coefficients® gives

. 1/2
j+1l—m m—1/2

. 1/2
Jt+1l4+m m+1/2
< 2 +2 ) Yj+1/2 (05 ‘P)

. 1/2
J+m m—1/2
(552) vres

Jj—m 1z 1/2
_ e
(2]) Y];1/2 (9,@)

The eigenfunctions X (6, ¢) are orthonormal on the unit sphere with respect
to the inner product*

X+\K,|m(97 SO) =

X—|xjm (0, @) = (3.2.11)

(XHI'HL/ |Xnm) = //Xi’m’ (07 QO) Xnm(oa QO) sin 6 d d@ = 55% 6m’m- (3212)

3.2.2 The operator o,

The operator o, = o - e, sets up an involution connecting basis functions with
opposite signs of x:

2 In this book we use the convention that the order of coupling is I, s, j. The same
spin-angle basis functions are obtained if we use the order s,[,j but there is a
phase difference (—1)l_j+1/2. It is wvital not to mix formulae based on different
conventions!.

® Compare [2, §2.12]; Louck uses YUY 21/2I™ for our x4 |x(m

4 xT is the Hermitian conjugate of y, a row vector whose two elements are the
complex conjugates of those of x. The scalar product is therefore an ordinary
function of the variables 6, ¢.
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or Xum (0, 0) = —X—xm (6, ©)- (3.2.13)

Recall that X.m(f, @) and x_.m(f, @) are both eigenfunctions of 5% and js
belonging to the same eigenvalue pair j,m, but with opposite parity. The
commutator relations

Tr X o

[l,0.] = —ih

r :—[S,O'r},

can be verified by straightforward calculation, so that as j =1+ s,
[j, UT] =0.
Thus
JOr Xrm (97 @) = 0rJ Xwm (97 90)’

verifying that both x.m (0, ¢) and o, xxm (0, ) are simultaneous eigenfunc-
tions of 52 and j3 belonging to the same pair j, m. Similarly, as Px = —x and
P does not act on spin matrices, we have

{P,o,} =0
so that

Py Xkm(0,0) = =0, P Xum(0, ¢).

It follows that x—_.m (6, ) is proportional to o, x.m(8,¢) and it is only nec-
essary to find the constant of proportionality. The simplest way to do this is
to observe that, in spherical polar coordinates,

e, = (sinf cos p,sin 6 sin p, cos )

so that

. cosf sin fe
a. = O - frg . .
" " sinfet? —cosh

Now because the constant of proportionality must not depend on 6 and ¢, we
can pick a particular direction, say § = 0, ¢ = 0, to verify equation (3.2.13).
It is also instructive to observe that this result holds for general directions by
direct computation: the relations for contiguous associated Legendre polyno-
mials [3, p. 161, equations (15) — (18)] give, for example,

[J+m m—1/2
2 ij1/2 (0,0) =
[j"i'l_m m—1/2 . —i lj+1+m m+1/2
cosf WY;J'_I/? (9,(p)—sm9e ® WY;+1/2 (G,SD)
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[J—m m+1/2 _
Tj}/j_l/Q (9590) -
. io [JH1—m_ m_1/2 [7+14+m_mi1/2
Sin 96+ ¥ W}Gﬁl/Q (97 SD) + COSG W}/jﬁl/Q (97 90)

reproduces the components of X _.m (0, ) from o, X4 |xm (0, ¢). The inverse
transformation is left as an exercise for the reader.

3.2.3 The operator co - p

We start by expanding  x | = & X (& X p) and rearranging to give

1 .
p=erpr— € x1l, pr=e, -p=—ily,

taking care not to change the order of the noncommuting quantum mechanical
operators x and p. Thus

ca~p:carp,«—50'~(er x 1),
r
Because (A.2.16),

(o-e)(o-l)=(e-l)+io- (e x1),

(e, -1)=0and K = —1 — o -l we arrive at the important formula
K+1
co-p=—ico, (8,« + * ) , (3.2.14)
r

3.2.4 Separation of radial and spin-angular parts

The Dirac central field Hamiltonian can be partitioned in conformity with
(3.2.4) so that, with the corresponding representation of av and 3 matrices
and the formula (3.2.14),

H=ca-p+pmc+V(r) (3.2.15)
K+1
me? +V(r) —ico, <8T + :)
—ico, (52« + K+ 1> —mc? + V(r)
r

and
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0= (H - E) ¢() (3.2.16)

Bx (6, )
:(ca-p+ﬂmc2+V(7')—E) " ,

igX—nm(oa 90)

{(mCQ L V(r)—E)P+ec <f$ + /:Q> } Xeom (0, 0)

: i{c (dP +EP) + (—me® +V(r) —E)Q}Xm(&w)

dr r

The substitution

)

d 1 f0) _ 1df0)
dr r r 7 dr

allows extraction of a common prefactor 1/r. The linear independence of the

spin-angle functions allows us to separate the radial parts to give the coupled

equations

(me? +V(r) — E) P+ he <—C;Q + EQ) =0
P x ror (3.2.17)
he (dr + 7aP) +(=mc®+V(r)— E)Q = 0.

The 4-spinors (3.2.4) with m = —j,...,+J span a (2j 4+ 1)-dimensional ir-
reducible representation of the rotation group. Their symmetries, exploited
in [1], simplified the construction of the atomic relativistic self-consistent field
equations and helped make Dirac-Hartree-Fock calculations feasible on the
computers of the 1960s. Chapter 10 also exploits these properties for molecu-
lar calculations in a manner that is even more striking.

3.2.5 Angular density distributions

The Dirac particle density (2.5.2) for a stationary central field state

wEmm(x) = ¢Emm(a’) e_iEt
is given by

Substituting from (3.2.4) gives

pErm () = {|Pe(r)]* Aem (0) + |Qen(r)PA—wm ()} /r*.  (3.2.19)

where, making use of (3.2.13), we have

A (0) = Xiem (0, 0) Xem (0, 0) = A (6), (3.2.20)
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independently of ¢. Thus (3.2.19) factorizes into the product,

Dg(r
PErm(T) = b; 2( ).A|K|m(9), (3.2.21)
of a radial density
D (r) = [Pea(r)]* +|Qex(r)* (3.2.22)

with the common angular distribution Aj,,, (¢). The result (3.2.20) was first
derived by Hartree [4] as an identity in terms of associated Legendre poly-
nomials. Explicit formulae for the angular densities Aj.|.,(0) and for the

Table 3.1. Angular density functions

A. Relativistic B. Nonrelativistic
|| |m| 4. A}) m (0) Um| 4. Al (0)nr
1L 001
2 3 3sin%0 1 1 2sin®0
1 11+ 3cos®0) 0 3cos’d

3 3 Lsin'g 2 2 Lsin'e
2 35in*6(1 + 15 cos® 0) 1 15sin®6cos® g
1 3(5cos*@—2cos’0+1) 0 2(3cos’f—1)°

corresponding Schrodinger angular densities

2+ 1 (1= |m])!
4w (L+|m|)!

At (0)nr = Y770, 0)? 1B ()2

for a selection of values of |k| and I are shown in Table 3.1. The relativistic
angular distribution A, (0) is very similar to that of Ay, (0)n, for | = |k| —
1. The main difference between the relativistic and nonrelativistic angular
densities, shown in Figures 3.1 and 3.2, is that the nonrelativistic densities for
|m| < I have “wasp waists”, whereas the corresponding relativistic densities
for |m| < j — 1/2 have “middle-aged spreads”. The zeros in the angular
functions are washed out by relativity. The sum of the angular densities over
the projection quantum numbers m is independent of the angles for both
relativistic and nonrelativistic distributions, because

J . l
2j + 1 20+ 1
Z Amm(e) = Ar 5 Z Alm(e)n'r = An .

m=—j m=—I
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These results can also be derived in an elementary fashion from the properties
of spherical harmonics [4]. For this reason, the set of functions {¥g x m |m =
—j...j} for bound states is said to define a subshell just as in the Schrodinger
theory.

A 3/2(0,0), A11(0,0)nr

AL
Wi i;‘f‘.:
TERuss,
usls

i

Fig. 3.1. Angular densities, A|.| |m|(6) and Ay | (0)nr.
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e 2o,
,‘Q‘\‘ !‘_»‘,"

E&*‘“&"ﬁﬁ

SN TR
LT, ",
allZen
N S
S,

Fig. 3.2. Angular densities, A|;| |m|(6) and Ay | (0)nr.
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3.2.6 Radial solutions for the free particle

The radial Dirac equations (3.2.17) for a free particle, for which V() = 0, are
2 d K
me* —E c|——+2 Pg(r)
d kK
¢ (dr + 7‘) —mc® — E QEx(r)

By eliminating one or other of the components, we see that both Pg,(r) and
Q Ex(r) satisfy the second order equations

d*Pg,, 5 K(k+1)
(3.2.23)
dQQE/{ 2 R(E + 1)
a2 +{P T2 QEex = 0.

where p? is the square of the relativistic 3-momentum

2p? = B2 — m2ct

and
K = —K.

These equations are the defining equations for the Riccati-Bessel functions
(see, for example, [5, §10.3] and Appendix A.3). Because

k(k+1)=11+1), ®RE+1)=I1+1),
we can express the solutions of (3.2.23) in the form
Pg(r) = Ax fi(z), QEex(r) = Bz fi(x), T=pr, (3.2.24)

where f;(z) is a spherical Bessel function of the first, second, or third kind
[5, §10.1.1], Appendix A.3. The ratio A/B in (3.2.24) can be determined by
using one of the two component equations of (3.2.17), say

(m + ) Qenlr) = (5 + %) Pealr) (3.2.25)

E_ cp B E—me2\'?
A" E +mc? = E + mc?

where n = sgn (k). The relation (3.2.25) is closely related to equation (A.4.12)
of the appendix. The solution of the radial reduced equations (3.2.17) is
therefore

so that
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aN 1/2
Ppa(r) N(Ejrb’?) fi()
u(r) = - o fn (3.2.26)
Qer(r) N (7rE> z fi(z)

where N is an overall normalizing constant. Selected properties of the spheri-
cal Bessel functions will be found in Appendix A.3. The equations (3.2.23) are
of second order, so that linearly independent solutions come in pairs. These are
either of standing wave type, (ji, i), or of progressive wave type (hl(l), hl@)).
The solutions of the first kind, j;, are bounded everywhere, including the
singular points x = 0,00, whereas the solutions of the second kind, y;, are
bounded at infinity but have poles at x = 0. The spherical Hankel functions,
the solutions of the third kind, as linear combinations of the functions of the
first and second kinds,

WY (@) = i) +ig(e), WP (@) = jile) —in(z),

have poles at the origin but are bounded at infinity. The structure of (3.2.25)
implies that the two components of u(r) must contain Riccati-Bessel functions
of the same kind. For a free particle |E| > mc? and x = pr > 0.

3.2.7 Partial wave normalization
The inner product of two free particle solutions is given by

Dprrrm | B} = / W (@) b (@, £)d (3.2.27)
where the integral is over all space. The orthonormality condition (3.2.12)

ensures that this is diagonal in the angular quantum numbers s, m and the
integral reduces to

<wE’n’m’ |'¢}Emm> = 6&’,n-6m’,m/(; {P;’H(T)'PEK(T) + QTE/H(T>-QEH(T>} dr.

For standing waves, the integral on the right-hand side can be evaluated in
terms of the well-known integral [6, pages 90-91]

™
725(}9—10/)

o0
. . / 2
Jipr)(p'r)rodr =
| it = 5

so that
[ {Ph)Pon(r) + QL) Qo) dr = N300 - )

Thus N = 1 normalizes (3.2.26) with respect to momentum. Because
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55~ B = |2 sty ) = o ")

normalization with respect to energy requires

N = (|El/p)"?.

The spherical Hankel functions hl(l)(x) represent outgoing progressive
waves

E + mc 1
1 (E mCQ) h( ) ®r)xs,m(6,9)
W) =N E (3.2.28)
mc 1
1/4
E + mc >
ch,m(ev (b)
N ipr—a+nm/2) E me?
pr E mce

1/4
E+mc?) X—r,m(0,0)

(see Appendix A.3). The relation (3.2.13) enables us to write the asymptotic

radial particle current density as

2
s(r) = [W con/)] ‘e, =c (:}i) [Xl)m.xﬁ,m + Xin,m'X*H,m:| . (3.2.29)

and integrating over the surface of a sphere of radius r = R using (3.2.12)
gives the outgoing particle flux

S(R) = /TZR s(r)r?sinf df dp = 2c (J;)/>2 ) (3.2.30)

so that
N/p=(20)7"/2.

gies unit outgoing flux. Because hl(2) (pr) = [hl(l)(p r)} , the ingoing partial
wave has the same normalization. Thus, in the formal nonrelativistic limit

c — 00,
ipr—(+1)7/2)
(1) ~ —1/2 ¢ Xn,m(97¢)
o) 2 S (Xm0,

as expected.

3.3 Hydrogenic atoms

For hydrogenic atoms, the potential energy in atomic units is V(r) = —Z/r,
so that equations (3.2.17) take the form
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(me? = Z/r — E) C<Ui+i> Pra(r)
d x

= 0. (3.3.1)
C<W+> (=me® = Z/r — E) | \Qex(r)

We seek solutions of (3.3.1) on 0 < r < oo, whose end-points are singular
points of the matrix differential operator. These boundary values determine
the nature of the solutions.

We start with the limit 7 — oo; then (3.3.1) reduces asymptotically to

d
m62 —F —C? PEH(T)
d r — 0,
c— —mc—F QEx(r)
dr
so that
Pp(r), Qpe(r) ~ exp(£Xr), A2 =m2? - E?/c% (3.3.2)

There are two situations:
—mc? < E <mc?:  \is real

Either both components increase exponentially like exp(|A|r) or both ap-
proach zero like exp(—|A|r) as 7 increases. Thus the integral of the radial
density (3.2.22) over the interval (R, c0),

/ Dg,.(r)dr,
R

where D, (r) = {|Pgx(r)|* 4+ |QEx(r)|?}, is only finite for the exponen-
tially decreasing solution, which therefore represents a bound state.

2

—00 < E < —mc?, me®* < E <oo: \is pure imaginary.

When E > 0 we set A = —ip where
p? = B2/ — m2?

in which we take p = |p| to be the positive root. The radial amplitudes
Pg.(r) and Qgk(r) either represent progressive waves, outgoing if they
are proportional to exp(-+ipr), incoming if proportional to exp(—ipr), or
standing waves if proportional to some linear combination of sinpr and
cos pr with real coeflicients; in any case f;o Dg,(r)dr diverges.

We can develop power series solutions near » = 0, with leading term

PEK(T)

Qin(r) } L0}, 7f=#" - a’Z (3.3.3)
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where the exponent v depends only upon the angular parameter £ and the
atomic number Z is independent of the energy parameter F. We want the
probability density to be bounded near the origin:

0< / Dg,.(r)dr < M, (3.3.4)
0

for some finite M;. Because Dg,(r) o< 7527 near r = 0, (3.3.4) is satisfied if

+2vy > —1.

Thus we must discard the solution with v < 0 if |y| > 1, corresponding to

aZ < y/k?—1/4. This condition is most restrictive for the case || = 1 or
j = 3, which requires Z < cV/3/2 ~ 118.6. Coddington and Levinson [7]
classify the situation in which only one of the two solutions satisfies (3.3.4)
as the limit point case (3.3.4); clearly this solution is unique. For Z > ¢+/3/2
we have the limit circle case: both the solution proportional to »~” and that
proportional to 77 satisfy (3.3.4). Any linear combination of both solutions
is then admissible, and we need an additional constraint to make the solution
unique. The potential energy operator —Z/r must have a finite expectation
value,

R/
1
0< / ;DE,Q(r)dr < M, (3.3.5)
0

for some finite Mo, so that we must discard the solution with v < 0. The
solution with v > 0 is therefore valid for all Z < ¢ |k|, extending the range
of acceptable solutions to Z = 137 for |k| = 1. The integral (3.3.5) for the
~ > 0 solution is always finite for |x| > 1, so that then (3.3.5) is redundant.
Most discussions of the Dirac hydrogenic equation ignore (3.3.5), and avoid
discussing the status of the analytic bound state solutions; however Greiner [8,
§9.12] goes so far as to suggest that bound solutions for Z > ¢ m have no
physical significance! In fact, the same problem occurs for s states in the
Schrodinger theory of the hydrogen atom. The indicial equation has solutions
s = 1,—1 — 1; the negative power solution is always (rightly) discarded, even
for [ = 0, where it is in fact square integrable. The fact that (3.3.5) is violated
for s = —1 seems usually to have gone unnoticed.

For Z > 137, v becomes pure imaginary for || = 1 and there are no
normalizable solutions near » = 0. Real nuclei have a finite size; this per-
mits solutions for much higher values of Z. Applications to the physics of
superheavy elements and to heavy ion collisions are treated in detail in [8, 9].

The discussion of charge conjugation in §3.1.6 and of negative energy states
in §2.5.6 relates solutions for negative energy to scattering solutions of posi-
tive energy. The formalism of this subsection therefore remains valid for the
negative energy continuum, E < —mc?, if we make the substitutions

E——-E, Z—-Z k——kK Pg,;< Qp s
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We have therefore the machinery for treating positron processes as well as
electron processes.

3.3.1 Solution of the radial equations

There have been many studies of the radial equations for hydrogenic atoms,
for example, Darwin [10], Gordon [11], Mott [12], Hylleraas [13], and Johnson
and Cheng [14] as well as Dirac himself [15, Chapter XI]. The asymptotic
exponent, A, (3.3.2), is real for bound states, and we can define an apparent
principal quantum number, N, by the equation

A =Z/N = +mey/1 — E2/m2ct. (3.3.6)

By rearranging, we obtain®

E = +c\/1 - Z2/N2c2. (3.3.7)

We assume a solution incorporating (3.3.3) at the origin such that

P (r) = Nix (c+ E/o)'/? p7e /2 X (p) + Y (p)]
Qen(r) = Npx (c = B/o)"? pYe (X (p) = Y (p)] (3.3.8)

where p = 2A\r, N, is a normalization factor and X (p) and Y (p) are to be
determined. Substituting (3.3.8) into (3.3.1) we find, after some algebra, that
Y (p) satisfies
d*Y (p) dY (p)
dp? dp
which is Kummer’s confluent hypergeometric equation [3, Chapter VI], [5,
§13.1.1], Appendix A.3, where

+(b—p) —aY(p)=0 (3.3.9)

a=vy—-NE/?, b=2y+1, (3.3.10)
whilst ) v (p)
X(p) = —— (aY(p) + pdpp) . (3.3.11)

Equation (3.3.9) has pairs of linearly independent solutions satisfying dif-
ferent boundary conditions at the regular singular point p = 0 and the irreg-
ular singular point at co. A solution bounded as p — 0 is

(@)1 . (a)2p? (@)n p

Y = M(a,b;p) =1+ —= — 4 ... — +... 3.3.12

o) = Mo bip) =1+ G+ gor ot i+ (3.3.12)
where (a)o =1, (a)p=(a+n—1)(a)p-1=ala+1)...(a+n—-1), n>1.
A solution which is singular at p = 0 and is linearly independent of Y7 is

5 The negative root would be inappropriate for a bound state.
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Ys(p) = Ula,bi p) (3.3.13)
o { M (a, b; p) 3 1_bM(1+a—b,2—b;p)}
sinmb \T(1+a—b)I@®) ° T2 —0)

This is a multi-function, its principal branch being defined by —7 < arg p < 7.
The general solution of (3.3.9) is a linear combination Y = AY; 4+ BY; with
arbitrary complex coefficients, A, B. We shall also need another pair of linearly
independent solutions:

Ya(p) = p' P M(1+a—b,2-bp), Yi(p)=e’U(b—ab;—p). (3.3.14)

The conventional labelling of solutions follows [5, §13.1.12 -§13.1.19]. The
pairs Y7 and Y5 have a simple behaviour at the origin, whilst Y5 and Y7 have
simple exponential behaviour as p — oco. The functions X; can be obtained
from the Y; using [5, equations 13.4.10, 13.4.23]. We now define u; to be the
(unnormalized) two component vector with elements P;, Q; as in (3.2.26), so
that the first pair of solutions can be written

uy = ple /2 (3.3.15)
<(c + E/o)"* {aM(a+1,b;p) + (N — )M (a, b; p)}>
(c— E/)"? {aM(a+1,b; p) — (N — k)M (a, b; p)}
and
Uy = p Ve P2 (3.3.16)

(c+E/)* {1 +a—bM2+a—0b2—b;p)
+(N—-—rk)M(Q+a—-b,2—b;p)}

(c—E/)"* {(1+a—b)M©2+a—0b2—b;p)
—(N—kK)M(1+a—02-bp)}

whilst the other pair of solutions is
us = pTe P2(N — k) (3.3.17)
(@+Md“«w+mwwu@m+vwamv
(c— E/)* {(N + ®)U(a+1,b;p) — Ula,bsp)} )
and
uy = pYetr/? (3.3.18)
((c +E/) P {—Ub—a—1,b;—p) + (N = K)U(b—a, b; p)}>
(c—E/c)/* {~U(b—a—1,b:—p) = (N = 0)U(b—a,b;—p)} )

There is at most one pair of linearly independent solutions, so that the two
sets of solutions are related by
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w1 = Aus + Buy, us = Cus + Dury, (3.3.19)
where
A= (b)/T(b—a), B =™ @= P(p) /I(a),
C =& _p)/I(1—a), D=2 —-b)/T(14a-b).

3.3.2 The bound state solutions

The probability integral
(oo}
/ Do (1) (3.3.20)
0

must be finite for Dg,(r) to represent a bound state. The power series defining
the confluent hypergeometric functions appearing in u; are finite at the origin
and converge uniformly to functions that increase asymptotically like exp(p)
as p — 00. Thus (3.3.20) will only be finite if the power series terminate, which
requires a to be a non-positive integer. The solution us has a non-normalizable
radial density at the origin, and can be discarded. We therefore set

a=-"ny n,=0,1,2,...;

n, is known as the inner quantum number. Inserting this into (3.3.10), we see
that

nyp=—a=—-y+ NE/c
Substituting for F from (3.3.7) and rearranging the result, gives the apparent
principal quantum number

N _ [(nr +7)2 +05222]1/2

]1/2

= [n® = 2n,(]k| — ) (3.3.21)

where

n=n, + |kl
is the principal quantum number. It follows that, for bound states, (n, +
7)/N <1, so that 0 < E = c*(n, +7)/N < ¢% In terms of n, n, and N,
the normalized bound state solutions of the Dirac hydrogenic problem are
therefore

Pp(r) = Ngx (c + E/c)/? prer/? (3.3.22)
[=ne M(—n, + 1,27+ 1;p) + (N — &) M((—nr, 27 + 1; p)]
QEn(r) = Ny (c — Bfe)'/? pre=e/? (3.3.23)

[=neM(—n; + 1,27+ 1;p) = (N — k)M ((=n;, 27 + 15 p)]

where

aZ F(Qv—i—nr—i—l)}l/z

New = {QNQ(N— K) D2y + D))
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3.3.3 Charge distributions and energy levels in hydrogenic atoms

The notion that qualitative differences between relativistic and nonrelativistic
energies and charge distributions are significant for understanding where to
expect physical differences in the predictions for atoms, molecules, and solids
was introduced in §1.2. These differences are entirely due to the dynamics of
the electron in hydrogenic atoms. The way in which electromagnetic inter-
actions between electrons modify the picture in many-electron systems was
reviewed in §1.3 and will be investigated more deeply later in the book.
Dirac and Schrédinger angular distributions, §3.2.5, are somewhat dif-
ferent. Most obviously, the zeros of the nonrelativistic angular density, which
occur at angles at which the associated Legendre polynomials Pllm‘ (cos 0) van-
ish, become minima in the relativistic case. Relativity smears the sharp edges
of the distribution. Following [16], we look at relativistic effects on the radial
probability distribution and on the energy levels. The corresponding relativis-
tic charge densities are more compact and the relativistic bound energies are
more negative than their nonrelativistic counterparts. The Schrodinger eigen-
values in hydrogenlike atoms depend only on the principal quantum number
n; the Dirac eigenvalues depend on n and |k| (or j) giving rise to fine structure.

When Z is sub-critical (that is, Z < ¢|k|) and v = ++/k2? — Z2/c2,
2

4, 4
2] +0(2%/c*) > 0. (3.3.24)

k| =~ =

from which we see that

1/2

N = [n* = 2n.(]k| — )] < n.

Thus, relative to the usual nonrelativistic zero of energy, E = mc?,

Z2 Z? z?
— 2 2 —
em—c{ 1- 262—1}<c{ 1—n202—1}<—2n2—6nl~

(3.3.25)
A similar argument using (3.3.24) shows that the eigenvalue €,, increases
monotonically as |«| increases. In nonrelativistic terms, the centrifugal barrier
increases with increasing angular momentum, reducing the probability for an
electron to penetrate the high potential region near the nucleus. Its maximum
orbital speed will therefore be less and its binding energy will be closer to the
nonrelativistic value.

The relativistic hydrogenic electron is always more tightly bound than its
nonrelativistic counterpart, depending on the size of the relativistic coupling
constant Z/c = aZ. Clearly the difference vanishes in the mathematical non-
relativistic limit ¢ — oo in which light is effectively regarded as propagating
with infinite speed.

Similar inequalities can be constructed for the radial moments of the charge
distribution ((2Z7)*%),,. Table 3.2 displays the formulae derived by Garstang
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Table 3.2. Radial moments ((2Z7)°),. of hydrogenic bound states

s Nonrelativistic Relativistic

2 2n2[5n? 4+ 1 — 31(1 4 1)] 2{N?*(5N? —2x?) (1 — Z*/N?c?)
FN2(1 —~2) — 3kN2 /1 — ZQ/N%?}

1 3n%2—1(141) (3N? — k1)1 - Z2/N2¢c2 —

01 1

1 1/2n ny + (s = 7)|l/2yN?

9 1 k2\/1— Z2/N2c2

T oom3(2041) 272N3(2y — sgnk)

5 1 —3N?k\/1 = Z2/N2c2 + N? + 2+%K?
An®l(l +1)(20 +1) ANS(y = Dy(y + D(2y = 1(2y + 1)

and Mayers [17] for s = 1,2, by Burke and Grant [16] for s = —3,—-2,—1,0
and, using a different approach, by Kobus et al. [18] for s = —2. A comparison
of relativistic and nonrelativistic density profiles for the hydrogenic mercury
ion (Z = 80) will be found in Figs. 1.1, 1.2, and 1.3.

3.3.4 * The continuum solutions

The parametrization must be changed for continuum solutions. The conven-
tional choices for the positive energy continuum, E > ¢? (in atomic units),

are
2
A — —ip where p=+y/—5 —c? (3.3.26)
c

Z
N — v’ where v'= " (3.3.27)
NE ZE
—— —iv where v=— (3.3.28)
c? c2p

where, as usual, p = |p| is the relativistic momentum, so that

a—y—iv, b=2y+1 (3.3.29)
p— —2ipr, (—E)Y? 5 —i(E— )2, (3.3.30)
With these substitutions, the solutions regular at the origin can be written
E 2\ 1/4 )
Pg.(r) =N (;;) (—2ipr)7 " (3.3.31)

X {7,“’/ My +1—iv,2y+1,—2ipr) + M(y —iv, 2y + 1,21'1”’)}
K — 1V
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E—¢

1/4 )
M) (—QZpT)'Y e'P’ (3332)

Qux(r) = —iN (

Kk — !

X {— T My 41— v, 2y + 1, —2ipr) — M(y — iv, 2y + 1, —2ipr)}
The asymptotic behaviour when r — oo can be found using [5, 13.5.1]:

(—2ipr)? e "M (y 41 —iv,2y + 1, —2ipr)

F(Q"Y + 1)671/71—/2 —i(pr+vin2pr)
I(v+1—1iv) ’

(=2ipr)Y "M (y —iv, 2y + 1, —2ipr)

~ F(zfy —+ l)e_UW/Q i(pr+vin2pr—vym)

I'(v+1+iv) '
Introducing
- —Kk + i/
v =arg I(y+i 2pn = BT 3.3.33
7o =arg D(y+iv). eon = 0 (33.33)
where p,, is real, gives
E+c? 1/4
/ <E — 02> cos ¢(r)
fEx(r) ~ N B2\ (3.3.34)
where
d(r)=pr+vin2pr— (I4+1)7/2 4 0. (3.3.35)

All factors independent of r have been absorbed into the normalizing constant
"o, and the Coulomb phase shift is given by

Op = pr — 0w —y/24+ (I + 1)7w/2 (3.3.36)

in agreement with [19, page 79|, where the definition (3.3.36) ensures d,, — 0
as Z — 0. A second standing wave solution, which will not be regular at the
origin, will be

E+c\*
o[ (5
9E&\T) ~

o2\ L/4
<LEC+;> cos ¢(r)

(3.3.37)

Progressive spherical partial wave solutions can be constructed as
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Hi, (r) = feu(r) £ igp.(r) (3.3.38)

2/ _ 24
~ N exp(Lip(r)) (igfg_c C/QJ/EE N C)Q>1/4> :

As in §3.2.7 the normalization
N = (2¢)71/2 (3.3.39)

ensures that these solutions give unit outgoing/incoming particle flux consis-
tent with nonrelativistic conventions. For delta function normalization,

/°° fHr).f (rYdr = /OO g'(r).g' (rydr = §(E — E').
0 0

where f/(r) and ¢’(r) denote functions with the parameters E, p replaced by
E’,p', the appropriate choice is

N’ = (me)~ /2 (3.3.40)

3.4 Scattering by a centre of force

In this section, we discuss potential scattering of electrons from a fixed centre
of force. Quantum mechanics and classical mechanics give the same cross
section for Rutherford scattering [20], where the force field is coulombic. This
serves as a good introduction to Mott’s relativistic version [12].

3.4.1 Nonrelativistic potential scattering

We idealize the problem in terms of the motion of a particle in the field of
a potential V(r), where r is the distance of the particle from the origin. For
the present, we exclude the Coulomb case by assuming that rV(r) — 0 as
r — o0o. A particle with momentum p is incident along the z-axis in the
positive direction, and we require the probability of scattering through an
angle 0 as it passes the centre of force. As shown in textbooks [19, Chapter
I1], [21], the wave function far from the centre will have asymptotic form

Y~ e e £(0), (3.4.1)

in which the first term represents the incident beam and the second describes
the outgoing scattered particles. The number crossing an area element dS at
the point (r,6,p) when r is large is then v|f(6)|> dS/r? where v = hp/m is
the particle speed. The incident wave, e’P?, gives a density of one particle per
unit volume, and v electrons per unit area per unit time are therefore incident
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along the z-axis. Thus, if df2 = dS/r? is the element of solid angle, the number
of particles scattered into df2 per unit time is I(0) = |f(0)|?, and the number
of particles scattered between 6 and 6 + df is

|£(8)]? 27 sin 6 df.
The incident plane wave is the solution of a free particle Schrédinger equation
(V2 +p*)p =0,

whilst the wave equation satisfied by the electron moving in the central force
field is
(V2+[p*=U@)y =0 (3.4.2)
where U(r) = 2mV (r). This has axially symmetric solutions of the (unnor-
malized) form
Yy = r L Fy(r)P(cos §)

where P;(cos#) is a Legendre polynmial and Fj(r) satisfies

d*F 5 I(1+1)
ddr2—|—<p —U(T)_ 2 >F—Oa

we require the solution which is well-behaved at the origin, and discard the
other solution.

Because (3.4.2) is a linear homogeneous equation, the most general ax-
isymmetrical solution is of the form

Y= Z Ay~ Ey(r) P/(cos ) (3.4.3)
1=0

with arbitrary coefficients A;. The incident plane wave can also be expanded
in a similar fashion [5, 10.1.47]

o0

e'P? = Z(Ql +1)d ji(pr) Py(cosb), (3.4.4)
1=0

where j;(pr) is a spherical Bessel function [5, §10.1], with asymptotic form
) 1. 1
Jilpr) ~r  sin [ pr — 5[7‘( , T —o00. (3.4.5)
It is not difficult to prove that the asymptotic form of Fj(r) is
. 1
Fy(r) ~ sin <pr—2l7r+m> , T —00 (3.4.6)

so that n; vanishes in the absence of the potential U (r). If (3.4.3) is to have the
correct asymptotic form (3.4.1) then the difference ¢ — exp(ipz) must contain
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only outgoing waves. Inserting (3.4.5) and (3.4.6), we find the converging
waves can be eliminated if

A= (20+ 1) e,

so that the required solution is
(o)
=Y (21 +1)i'e" r~ Fy(r) P(cosb), (3.4.7)
1=0

from which the scattering amplitude is

o0

L > (21 +1) (€* — 1) Pi(cos ). (3.4.8)

f(e) - le =0

The total cross-section, @, is obtained by integrating over the angles:

47

Q:27r/ |£(0)]?sinf df = o Z (20 + 1) sin® ;.
0 1=0

Whilst there may be practical problems associated with generating and sum-
ming such infinite series, the phase shifts, n;, completely determine the cross-
section.

The solutions for a Coulomb have a slightly more complex asymptotic form
than (3.4.6), but can be treated using the same methodology. The potential
energy of two charged particles Zie, Zoe is V(r) = Z1Z5/r in Hartree atomic
units, so that the radial equation satisfied by F;(r) now becomes

d? o WI+1) 22,7y
{dr2+p 2y

}Fz(r) =0 (3.4.9)

The solution which is regular at the origin can be expressed in terms of con-
fluent hypergeometric functions [5, Chapter 13]

Fi(r) = const. " (pr)! TP M (1 + 1 — iv, 21 + 2; —2ipr), (3.4.10)
where v = —Z) Z5/p, with the asymptotic form

(21 + 1)l e 2™V Hion
2001+ 1 —iv)

1
F;(r) ~ const. sin (pr— 2l7r+1/ln2pr+ol)

where
oy=arg'(l+1—1iv).

It follows that the Coulomb scattering amplitude can be written down using
the preceding work provided we normalize Fj(r) so that
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. 1
Ei(r) ~sin{ pr+vin2pr — Jlw+ o1 ), (3.4.11)

giving the normalized expression

~2er™ D1+ 1 — )

B(r) 2+ 1)!

P (pr) M1+ 1 — iv, 20 + 2, —2ipr).

(3.4.12)

The Schrodinger equation for this problem can also be solved in parabolic

coordinates (§,7, @), where £ = r—2z,n = r+z,tan ¢ = y/x. Asymptotic anal-

ysis of the solution reveals that (3.4.1) is not quite right for Coulomb waves

as terms involving In pr appear in the exponents. The equivalent Dirac equa-

tion does not appear to be separable in parabolic coordinates: the interested
reader should consult [19, 21] for further details.

3.4.2 x Relativistic Coulomb scattering

The treatment of relativistic potential scattering due to Mott [19, Chapter IV]
follows the nonrelativistic scheme outlined above. The advantages of working
with 2-spinor or 4-spinor structures were not yet recognized in 1928, and
Mott’s equations treat each of the four components as an independent entity.
Here we use a more modern notation.

We choose the same coordinate frame as in the nonrelativistic calculation,
starting with the same unnormalized incident positive energy plane wave,
proportional to =% from (3.1.20) and (3.1.24):

_ ¢
U'(z)=eP*| co-p

E+ c?

# = a= ((1)) @ == ((1)) (3.4.14)

Because we are concerned with elastic scattering, we can drop the time de-
pendence and choose p = (0,0,p) as in the nonrelativistic calculation; the
time-independent spinors are

Pl () = e'P? (C(g) a) , PHw) = eP? (—C?p) 5) (3.4.15)

for the two spin states, where C(p) = cp/(E+c*) = /(E — 2)/(E + ¢2). The
next step is to expand P as in (3.4.4), replacing the Legendre polynomials
P;(cos ) by the equivalent spherical harmonics

. or=1,2 (3.4.13)
¢’I‘

where

oo

% =" [am(2L+ V]2 i ji(pr) Yio(0, )
=0
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In order to make contact with our spherical wave conventions, we now need
to express the uncoupled states in terms of the xxm (6, ¢), which we do by
inverting (A.4.4), so that (omitting arguments 6, )

1
YVio®a=—— VI —Vi+1x_,_
1,0 ¥ o m( X1,1/2 X—1 1,1/2)
and 1
Yio® 0 =—— (Vixi_1/o0+VIi+1x_1_1_
1,0 @08 \/m( X1,—1/2 X—i—1, 1/2)
Thus
Y (x) = \/47TZ it Ji(pr) (3.4.16)
1=0

C(p)

when the helicity is along the direction of motion and

1
X (\ﬁXz,1/2 —Vi+ 1X471,1/2) ® ( ) )

VA (x) = Vir Yy i Gilpr) (3.4.17)
=0

C(p)

when it is anti-parallel. In both cases, the lower pair of components are con-
stant multiples of the upper components. Equations (3.4.16) and (3.4.17) are
linear combinations of the (unnormalized) spherical wave solutions (3.2.26)

o jl(pr)Xxm
Yo () = (inc/*(p)jl(pr)xm)

where n = sgn s, | = j+n/2, | =j —n/2 =1—n and m = £1/2. With the
notation

1
X (\ﬁXl,—l/Q +VIi+ 1X—l—1,—1/2> ® ( ) )

Yom =0, Tem(0.0) = Virkxam(.0). k=|s]>0,  (3.418)
we can write

~ Jk(PT)Xk,1/2
(e 1 7 3.4.19
Vik,1/2 (zC(p)Jk—l(p 7‘)ch,1/2) ( )

- jk71(p7“)>~(7k.1/2 )

3 _ ] ' G, , 3.4.20
Yk1/2 (—z()(p).}k(p T)Xk,1/2 ( )

so that -
PH(x) = Z {ik?ZJrkJ/z - ik*llfb:k,l/z} (3.4.21)

k=1
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and
P*(x) = Z {iklz+k,—1/2 + ik*l{/;—k,—uz} : (3.4.22)
k=1

Similarly, the regular Coulomb solutions %< (x) have asymptotic amplitudes
(3.3.34) and (3.3.37)

{/;15:1/2(:”) ~—

1 sin (pr+vIn2pr — Sk + 6;) Xe,1/2
pr \iC(

p) cos(pr+vin2pr — §k‘7r + 0k) X—k,1/2
(3.4.23)

{/;C (z) 1 COS(PT-FVanpr—l]m_q_(S k) X—k,1/2

—k,1/2 —iC(p) sin(pr+yln2pr—fk7r+5 k) Xk,1/2 .

so that the Coulomb scattering wavefunction is

U~ Z {z Ay 1/)k 12— A C k 1/2} (3.4.24)

The linear independence of the functions ., allows us to choose the co-
efficients A4, = e"%++ so that ¥ has an asymptotic form that is the sum of
an incident plane wave propagating forward along Oz and outgoing spherical
waves as in the nonrelativistic case. The asymptotic scattered wave function

is
e'Pr F(&@)
Yscatt ~ 4.2
st~ & ( . (34.25)

where
1 & , _ ; _
F(0,¢) = % D (e = 1) Xkaj2(0,0) — (€2 = 1) X_p1/2(0,0) }
k=1

substituting

—kPy(cos 6 kP, 1 (cos
Xk,1/2(0;¢) = < H ) >7 X—k,1/2(0,¢) = < -1 )_ )7

—Pl(cos0)e'? —P! | (cosf)e™,

and rearranging gives the well-known result

0
F(6, ) = <g(f€ ()e)w> (3.4.26)

where

QL Z (k+1) (e** —1) + k (¥ — 1)} Py(cos¥),
k=0
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oo

Z (eQi‘s’“ — 6215*’“*1) Pkl (cos9)

k=1

1

9(0) = 5

The differential cross-section is the ratio of the number of particles scat-

tered into a solid angle element dw in unit time to the number of particles

in the incident beam crossing unit area in unit time. Because the (particle)

current density vector is defined by j = ¥fcar, the contribution dN to the
particle flux crossing an area element ndS, where |n| = 1, at the point r is

dN =3 -ndS =14 (ca-n)ydS (3.4.27)

For the incident plane wave 1! () this gives the flux crossing unit area normal
to the beam, n = e, is
2¢%p

Nine = PN x) (ca - e3) Yt (z) = 2¢C(p) = Fr (3.4.28)

Nine — p in the limit E — ¢ in agreement with the nonrelativistic result
NI = v = p/m because m = 1 for electrons The number of scattered
particles crossing an area element dS = r?dw, with normal e, at = in unit
time is

dNgcatt = WT

scatt

(ca-e,) Usearr? dw. (3.4.29)
To evaluate this we use (A.4.10), giving

eivr (C(p)F(& w))
r Fo,¢) )’

(6 erwscatt ~

(3.4.30)

from which
stcatt = ch(p) F(aa QP)TF(aa Sﬁ)dw

so that the differential cross-section for relativistic Coulomb scattering with

incident spin parallel to the motion is

Zz% = F(0,0)'F(0,) = |f(O)]* + |9(0); (3.4.31)

clearly this is independent of the helicity of the incident beam.
3.4.3 * Polarization effects in Coulomb scattering

By definition, the spin of the particle is defined as the total angular momentum
in the particle’s rest frame. The free particle spin projector P(n), (3.1.32), for
the direction n = (0,n), |n| = 1, becomes

I+o-n 0
P(n) = % < +O I—0'~n> (3.4.32)
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For spin oriented along n = (sin « cos 3, sin asin 3, cos ),

e ((1+cosa)/2 sinae™ /2 )

sinae”/2 (1 —cosa)/2

This has the real eigenvalues A = +1 with eigenvectors s, given by

« e
Ccos — sin —
. 2 . 2
S1 = a . y  S-1= a .
sin — e%? — cos — e
2 2

each of which can be regarded as a coherent linear superposition

SAA(}))H;(?)

of the spin states parallel and antiparallel to the original direction of quanti-
zation, Oz. The generalization of (3.4.25) for general spin orientation («, /)
becomes

LDscatt ~ ﬂ ( . Fl(e? SD) ) 3 }7‘/(07 4,0) — (Af(e) - Bg(e)e_“/’> 7
2ipr \ iC(p)F'(0, ¢) BF(0) + Ag(0)e'®

with differential cross-section
;% = F'(0,0) F'(0,0) = (IF(O)F + 9(0)]*) {1+ S(O) h(p)}.  (3.4.33)
The real function
f(0)g*(0) — f(0) g(0)
|£(O)1” + [9(0)]?

is known as the Sherman function [22], and

S(0) =i (3.4.34)

h( ) AB*e' — A*Be ™'
=1
4 [A]® + [BP?

describes the departure from axial symmetry. When the incident spin is in
a pure state with direction given by polar angles («, 3), we find a two-lobed
angular dependence,

h(p) = :l:% sin « sin(p — f),

with 4+ sign for the parallel and — sign for the antiparallel case.

Further study of electron polarization processes would take us too far
afield. The monograph [23] provides an introduction to the physics of polarized
electrons and to relevant experimental techniques of this still developing field.
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3.4.4 Historical note

The derivation by Mott [12] of the differential cross-section for Coulomb scattering
was one of the early applications of Darwin’s calculation of Coulomb wavefunctions
in 1928 [10, 19]. This work has been summarized in books such as [24, §15] and
has been a key feature of the interpretation of many experiments. However, it was
written at an early stage before the development of the machinery for spherical Dirac
spinors, and the notation used by different authors is confusing. This is particularly
the case with Coulomb phase shifts, which, in this book, we label with the quantum
number k. Thus where we write d; and d_x_1, Mott writes respectively n_x—1 and
Nk. Walker [25], who was one of the first to publish on relativistic effects on low-
energy scattering from non-hydrogenic atoms, quotes Mott’s formula using J, and
5

Here we have used the interpretation of c o as the Dirac current operator to re-
derive Mott’s formula. Mott argued that “asymptotically the scattered wave may be
regarded as made up of a number of plane waves proceeding outwards from the centre
in different directions”. This argument allowed him to adopt the nonrelativistic
definition for both the incident and the scattered particle current as the product
of the particle density, ||¢|?, and the speed v.. As (3.4.28) shows, this is only an
approximation in Dirac theory. It gives the correct cross-section because the upper
and lower 2-spinors making up the Dirac incident plane wave (3.4.13) differ only
by a real multiplicative factor C(p), as does Wscqst in the asymptotic region, and
because the leading terms in the asymptotic expansions of Wscqtr and o, Wseqrr are
the same.

Some light can be shed on this fortuitous agreement by Gordon’s decomposition
of the Dirac current [26], which divides the total current density into two parts

"=+ 5,
a conwvection current
. ih [~ ~ ~
=g (b0 —0"dw) = Largy
m m

similar to the nonrelativistic expression invoked by Mott and others in their treat-
ment of Coulomb scattering, and a spin current

e ia T _mv
J2 o Lo ap.
This can be proved by writing
. 1 ~ -
i =ge (W“w +¢v”w)

and using Dirac’s equation to substitute ¢ = 4" (i9, — qA, )y for ¢ in the first
term and v by its adjoint in the second, together with the formula AP = gt —
io"” from Appendix A.2. In the absence of magnetic fields, the radial convection
current reduces to p,/ m.zﬁw, which reproduces the nonrelativistic value for positive
energy states. Also the particle density for a positive energy particle is [E/mc® —
(q/2mc).¢]1/~11p, which only reduces to the density ¥ in the weak field limit with
E'/mc2 — 1. There is no nonrelativistic counterpart of the spin current in this
picture.
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3.5 * Relativistic quantum defect theory

The concept of a quantum defect seems to have appeared early in the history
of atomic spectroscopy when Rydberg found in 1889 that the term values of
series of lines in the spectrum of alkali atoms could be fitted to a formula
RZ?

(n—p)*’
where R is Rydberg’s constant, Z is atomic number, and u, which is nearly
independent of the integer n, is called the quantum defect. Modern quan-
tum defect theory (QDT) provides a framework for exploiting this notion in
a variety of applications capable, for example, of extracting values of T, to
spectroscopic accuracy, and hence determining accurate ionization potentials.
Quantum defects can be used to aid spectral line identifications and to locate
unobserved members of a spectral series. But most importantly, a knowledge
of quantum defects summarizes a great deal of information on a Rydberg se-
ries concisely and can be used to study series perturbations, autoionisation,
photoionisation, and resonance structures in electron-atom collisions. A com-
prehensive review by Seaton [27] deals with the foundations of QDT, mainly
from a nonrelativistic viewpoint, and sets out the formulae needed for most of
these applications. Connerade [28] makes extensive use of QDT in his survey of
the physics of highly excited atoms. Single channel QDT, focusing on one Ry-
dberg series, must be supplemented by multi-channel QDT to deal with more
complicated situations in many-electron systems where there is coupling be-
tween one or more spectral series of bound states as well as continuum states.

A relativistic version of QDT developed by Johnson and Cheng [14, 29],
is needed for the study of spectra of highly stripped atomic ions with pro-
nounced relativistic fine structure occurring in laboratory and astrophysical
plasmas. It is appropriate to study the single channel RQDT at this point as
a natural extension of the theory of Coulomb wavefunctions presented in pre-
vious sections. We begin by replacing the effective principal quantum number
N of the hydrogenic atom by an effective principal quantum number

N* = /(i +7)2+ 222, nf =n, — pins (3.5.2)

T = Too — (3.5.1)

so that the relativistic term values are given by

ZQ 1/2
(1 - ]V*2C2> - 1 . (3-5-3)

As usual, n = n, +|k|. Table 3.3 lists typical results from fitting (3.5.1) to the
observed term values from [14] to give nonrelativistic quantum defects ung
and from fitting (3.5.3) to give the equivalent relativistic quantum defects
pr- The two columns of nonrelativistic defects puy g are somewhat different,
because they must account for the difference in relativistic dynamics as well
as the non-Coulomb part of the atomic potential. ugr has to account only for
the latter so that the last two columns are essentially identical.

Thk = Toor — RCZ
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Table 3.3. Relativistic (ur) and nonrelativistic (unr) quantum defects for nds,,
nds /2 series in the observed spectra of C IV and N V. Reprinted , with permission,

from [30]

Ion n ndsy,

UNR

KR

'I’Ld5/2

nd3/2 TLd5/2

C 1V 3 0.001614 0.001533

NV

4 0.001912 0.001839
5 0.002075 0.002015
6 0.002211 0.002137
7 0.002520 0.002461

3 0.001490 0.001380
4 0.001778 0.001668
5 0.001876 0.001765
6 0.001879 0.001768
7 0.001817 0.001705
8 0.001704 0.001592

0.001507 0.001498
0.001779 0.001777
0.001926 0.001936
0.002051 0.002049
0.002353 0.002365

0.001324 0.001324
0.001570 0.001571
0.001643 0.001643
0.001629 0.001630
0.001556 0.001554
0.001434 0.001433

RQDT aims to express the quantum defect below threshold, E < mc?, as a
holomorphic function of energy, u,(E), in the complex E-plane, and to relate
this to the short range non-Coulomb scattering phaseshift §(E) for E > mc?.
Below threshold, u.(F) takes the value p,, when E = E,,,. We shall only be
concerned with one symmetry, k, in this section, so we can omit the x label
for brevity from now on. As in §3.3.1 we use the notation u(r) : Ry - Cx C
to denote the two-component radial function

We select two such linearly independent solutions of the Dirac Coulomb equa-
tion, ug and uy, which are entire functions® of the energy parameter E such
that

Uy = CLUR, U2 =CaUry

where

5 A function F(E, z) is said to be an entire function of E if, for all finite values of
E, the power series 3 > | E" f,(z) converges uniformly and absolutely to F'(E, z)
for all values of z.



3.5 Relativistic QDT 163
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Fig. 3.3. Model potential calculations of quantum defects as a function of the term
energy. The quantum defect functions §(E), u(F), and n(F) are defined in the text.
Reproduced, with permission, from [14].

> 1/2

€= ( +c> (2\)(~k+~y+ N — NE/c?),
c
B 1/2

co = ( —|—c> (2\)(=k —y+ N — NE/c?).
c

These functions enable us to relate the solutions at threshold, E = ¢2. John-
son and Cheng show that there are coefficients di,eq, es such that the two
independent solutions f(r), (3.3.34), and g(r), (3.3.37), above threshold with
delta function normalization can be written

f(r)=diur, g(r)=eiur+exus

where
2p'/21(b) . .
di =c1/Ny, Ni=-——" oxp(—mv/2 —iny/2 +ioy
/ T+ ) P/ / )
. —iTa F2 b
e1 = —(csembe 2™ 4 cotwb) dy, ey = — b)) o

Yy + i) [T (v +iv)[2 Ny
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The coefficients dy, e, es are real and continuous at threshold.

The motion of a Rydberg electron in an atomic ion will asymptotically
approach that of an electron in a Coulomb field due to the residual charge Z
on the ion, perturbed by potentials which decay faster at infinity than 1/7.
The asymptotic wavefunction will therefore have the form

u(r) ~ a(E) ug(r) + b(E) ur(r)
in which the function
B(E) = —b(E)/a(E)

is a holomorphic function of E [14, §2.2]. Below threshold, we can express u(r)
as a linear combination of uy(r) (3.3.15) and us(r) (3.3.17), where u; ~ e"
and us ~ e as r — 00,

¢ I'(a)I'(2-0b) a I'(a)
v (1_02F(b)F(1+a—b)ﬁ(E)> ML T

so that the coefficient of u; must vanish when E — E,,, a bound state eigen-
value, enabling us to identify

es () (1+a, —b)

AlEn) =2 T(an)I(2—b)

where a,, = —n} = —(n,—p,), where p, is the quantum defect, and b = 2y+1.
By using the relation
I'(z)'(1—z)=m cscmz

we can rewrite this as

_9F2(b)F(1+z,L—7)
a1 2myI(1+ 2z, +7)

-1

ﬂ(En) =

(cot T, — cot mwh)

where z, = ZE,/c*\n, A\n = /2 — E2/c2. The Rydberg eigenvalues F,,
form an increasing countable set converging to E,, = mc?. We can therefore
construct B(E), E € C, as a unique holomorphic function from its values,
B(E,), on this set. We can similarly define a quantum defect function p(FE)
from its values p(FE,) which is properly defined at energies above threshold.
Set z = ZE/c?\, 2/ = Z/\ below threshold, so that z, 2’ are both infinite at
threshold. Because I'(z + a)/I'(z + ) ~ 2*B(1 4+ O(z71)) as |z| — oo, we
can define a new function

I'(z+7)
227101+ 2z — )

B(Z,’)/) =

which, along with

y+z\ [(—k+y+2 -z
R(Z,Z/):< > ) (-KZ—’Y—FZ/—Z)’
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is finite and continuous at threshold. This means that we can take

I'2(b) (cot Tu(E) — cot wb) ™"

5(E) - 7271'7 (QZE/CQ)Z'YR(Z,Z/)B(Zv’y)

(3.5.4)

Note that B(z,~) is real below threshold. Above threshold, we have to make
the replacements z — iv, 2’ — v/, where v = ZE/c?*p, v/ = Z/p, so that its
real and imaginary parts are

B(iv,v) := RB(iv,v) = (1 + cosmbe *™) A(v, )
and
C(iv,v) := SB(iv,y) = —sintbe 2™ A(v, ),
with
A7) = IT(y + iv) 2™ 2?11
Above threshold, the asymptotic form is a linear combination of (3.3.34) and

(3.3.37)
u(r) ~ cos§(E) f(r) +sind(E) g(r)

where §(E) is the phase shift due to short range non-Coulomb forces. Then
above threshold,

I'?(b) (cot 6(E) — cscmbe™ 2™ — cot Wb)fl
2y (2ZE/c?)?Y R(iv,iv") B(iv, )

B(E) = -

from which the relation between the quantum defect and the phase shift is
given by

cot 6(E) = (1 + coshe >™) cot mu(E) + sinwbe 2™, (3.5.5)

In the nonrelativistic limit, b — 2|k| + 1 becomes an odd integer, so that
(3.5.5) reduces to the formula

cot 6y (E) = (1 — e72™) cot mpin, (E) (3.5.6)

given by Seaton [31]. At threshold, v — oo and cot §(E) = cot tu(E), E — ¢2,
and it is customary to choose the solution for which § = wu at threshold in
both relativistic and nonrelativistic versions of the theory.

There is an alternative form of quantum defect which is usually more slowly
varying than p(E), and hence is better suited for numerical interpolation and
extrapolation in applications. This can be obtained by rewriting (3.5.4) in the

form
_ I"?(b) K= 1
AE) = 2ry (22)%7 (n + ’y) A(z, k) (cot Tu(E) — cot wb)

where
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(z4+24+r+7)(z+2 —Kk—"7) 2\
Alz, ) = 22(z + 2') (z’) B(z,7).
isolates the energy dependent terms. A(z, k) vanishes when z takes any non-
negative values vy — 1,v—2,... for k = =l — 1, or 7,7 —1,... when k = [.
The only way for S(F) to remain holomorphic is if u(F) tends to an integer
at these energies. This constraint also appears in the nonrelativistic theory.
By defining a new quantum defect variable n(FE) such that

cot ) = A(z, k) cot Ty,

remains finite at the critical energies, we see that n(E) has no integer values
and is therefore likely to vary more slowly as a function of E as claimed.
Moreover, A(z,k) — 1 at threshold where n and u agree. A typical model
calculation for the relativistic nds;s 5,2 series in the C IV ion is shown in
Figure 3.3.

3.6 Green’s functions

In this section, we extend the construction of the Green’s function for the free
Dirac electron, §2.9.4, to the case of an electron in a spherically symmetric
potential such as the electron-nucleus Coulomb interaction. The equations are
no longer translationally invariant, so that the Green’s function is a function
of both z and z’ separately rather than of x — 2’. Thus (2.9.44) must be
replaced by

Sp(z,2') = % /C dz Gz, x'; 2)yo exp(—iz(z — 2')%/c). (3.6.1)

where the resolvent kernel G(x,x’; z) satisfies

(H—2)G(x,;2) = 0¥ (x — 2') (3.6.2)

and, (3.2.15),
H:=ca-p+ Bmc* +V(r) (3.6.3)
with V(r) = —Ze? /4megr in the case of a hydrogenic ion with a point nuclear

charge Ze; we shall normally use atomic (Hartree units) in which e? /4mey =
1.0. As H and the angular operator K commute, the Green’s function can be
written as a sum of independent radial reduced Green’s functions

Gz, 2’5 2) = Z Gz, x'; 2). (3.6.4)
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3.6.1 * Partial wave Green’s functions
We first construct the kernel for the inhomogeneous radial equation

(Hy — 2) u(r; z) = v(r) (3.6.5)

vinee <_CZ" " :> . (3.6.6)
c (i + ’:) Vir) —

where, from (3.2.15),
H, =

We wish to determine Plr:2)
rz
u(ryz) = (Q(r;z)) (3.6.7)

on 0 < r < oo subject to suitable boundary conditions. In terms of the reduced
Green’s function we write the solution as

u(r;z) = w(r;z) + /000 G (r,s;z)v(s)ds (3.6.8)

where w(r; z) is a solution of the homogeneous equation
(H, — z)w(r;z) = 0.

When V(r) = —Z/r, the spectrum of H,; consists of an infinite point set of
bound eigenvalues in (0, ¢?) with an accumulation point at ¢?, and continuous
eigenvalues on the line segments (—oo, —c?) and (c?, 00). Most of the potentials
we shall encounter in atomic and molecular calculations have this kind of
spectrum. We assume that z belongs to the resolvent set, consisting of the
whole of the complex plane cut from —oo to —mc? and from mc? to co with
the point eigenvalues removed. We seek a solution that satisfies

1. u(r; z) is bounded as r — 0;

2. u(r; z) ~ exp(ipr) as r — oo.

Because p := p (z) is a multi-function of z, we need to define which branch is
to be used. It is convenient to take

p(2) = q1(2) g2(2)
@(z) = (z+ )1/2, arg g1 (0) = 0 (3.6.9)
0(2) = (2= )%, argge(0) = /2.

This is equivalent to the use of the Feynman path Cpg, Fig. 2.3, in the contour
integral representation (3.6.1).
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The Green’s function G, (r, s;z) for this problem is matrix-valued on the
quarter-plane Ry x Ry at each z € C, and has a jump discontinuity on the
line r = s. Thus

G,&O)(r,s;z), for 0<r<s<oo

) (3.6.10)
Gyl (r,8;2), for 0 < s <r < oo

Gy(r,s;2) = {
so that (3.6.8) is equivalent to
u(r; z) = w(r; 2) +/°° GO (r,s;2) ’U(S)dS—F/OT G (r,s;2) v(s)ds. (3.6.11)
Substituting (3.6.11) into (3.6.5) gives

| =2 Gatrsi2yets)as (3.6.12)

0
+cJ {G,(fo)(r, ryz) — G,({O)(r, r;z)}o(r) =o(r),

where the second term on the left comes from differentiation with respect to

2 0 _1). For this equation to be

the limits of integration and J = —ic* = <1 0

satisfied for all values of r,

(He —2) GO (r,s;2) =0, 0<r<s,

(3.6.13)
(H,;, — 2) G,(fo)(r,s;z) =0, 0<s<m,
for all values of s, whilst
(G (1,75 2) = GO (1,75 2)] = (eJ) 7L = —J /e (3.6.14)

for all values of r. If u(r; z) is to satisfy the required boundary conditions,
then
lim, _,q G,(,io)(r, s;z) is bounded

lim, s o0 G,(fo)(r, s;2) ~ e’ z2>c2 p>0,

(3.6.15)

so that we can take solutions of equations (3.6.13) and (3.6.14) having the
form
GO (r s:2) =uO(r;2) @ Al(s), r<s

G,(fo)(r, s;z) = u(oo)(r; 2)®@B'(s), s<r

where u(%)(r; 2) and u(*) (r; z) are linearly independent (unnormalized) solu-
tions satisfying the boundary conditions respectively at 0 and oco. The condi-
tion (3.6.14) can now be satisfied on the line r = s if we choose

a0 (geiin) 70 (Goil),
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making

PO (r; 2) PO)(s: 2) PO (r:2) Q) (s; 2
e (RIS,

and

ooy (P52 PO(s:2) PO (1) QO (s:2)
653 = (G POn) G OO ) * <™

together with the Wronskian normalization

A{ul® (r; 2),u®) (r; 2)}
= P(152) QO (r;2) = PO (1;2) Q) (r52) = 1/c (3.6.16)

for all values of r. The outcome is that

(3.6.17)

gil(r,812) = PO (re;2) P (rs; 2),
gL (r,s;2) = PO (ro;2) Q) (rs; 2),
g2l (r,5:2) = QO (r<; 2) PO(rs; 2),
922(r,5:2) = QO (r<;2) QP (rs; 2).

To complete the construction we include the angular parts. Define
Z X () X (3)-

where 7 denotes a unit vector corresponding to the polar angles 6, . Then
Gy(r,s; z) (3.6.18)
A gt (r, s;2) Hy o (7,8)  —igl2(r, s;2) I,z (7, 8)
O\ g 2) Haw(#,8) g7 M (7, 3)

where A = 1/w{u(®(r;2),u>)(r;2)} if the normalization does not satisfy
(3.6.16). The structure of (3.6.18) is similar to that of wéo)(r<) ® wzf”( ),
although the radial parts are not conjugated in the second factor.

3.6.2 The partial wave Green’s function for the free Dirac particle

In the free particle case, (3.2.26) gives
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(z+/ep)"? £ (w)

u(‘)(x) =z 1
0 (z—/ep)”? ()

(3.6.19)

after dropping unwanted normalization factors. Here n = sgn (k) and

%) = gix), @) =n (@), z=pr

are spherical Bessel functions. Substituting from (3.6.19) into (3.6.16) and
noting that (Appendix A.3)

fi(@) =n (;; + D filz), I=1-n (3.6.20)

we find that (A.3.7)

A{u® (r;2), 0 (13 2)} = (pr)?n (B (o) jrlpr) — B (pr) ju(pr)}
= (pr)* WH (pr), jilpr)) = —i
so that
A=1/cA=i]c.

The fact that the Wronskian is not only independent of r but also of the
parameter z means that there are no values of the energy at which it van-
ishes. Were this the case, we could infer that the two solutions u(®)(r; z) and
u™) (r; z) are linearly dependent, which is the condition that z is an eigen-
value. We deduce that the free Dirac particle has no point spectrum. Thus

z—l—c2 i
gt = ( ) i) AV (@),

cp
gl2 = njie<). b (@s),
g2 = <) b (@),
zZ — 62 .
giz = ( p ) ]l-(x<).hlgl)(x>),

where x- = pr.,z~ = pr>. Regarded as a function of the complex variable
z, we see that this is holomorphic on the complex z-plane cut along the real
axis from —oo < z < ¢ and ¢? < 2z < 0o when p = p(z) is defined as in
(3.6.9).

3.6.3 Summation over partial waves in the free electron case

A demonstration that for the free electron

G(R,z) = ZGm(r, 8;2),
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where R = r—s, verifies that we have indeed constructed the Green’s function
correctly. To see this, it is convenient to combine the angular parts II,; . (7, §)
that have a common [ value:

Hl’l(,fq’ é) + H—l—l»—l—l(%a é) = s <Pl(,’; §) O- ))

47

after using the addition theorem for spherical harmonics

2l—|—1 ek / a
47 ZYI )Y (8).

It is therefore straightforward to see that

(242 20 +1 . A
ZG};(r,s;z):z< ; ) - Jilpre). b (prs) P(# - 8)
K =0

242\ el
= ( c > m, R— |'f'—5|7 (3621)

Similarly,
2 ipR
e

29 . o zZ—C
> erea=(5) o

The off-diagonal blocks can be summed by noting first that

o -p [fi(pr) Xem(P)] = inp fr(p ) Xemm(7)

from which

ipR

> Gz =3 Glraiz) =0 P g
and the final result is

1 (z+c co-p\ PR

Gm 83 = - Y

En: (T'Sz) C(ca-p z—cQ> AT R

2+ H el

= 3.6.22
¢ 47R ( )

as in (2.9.45).

3.6.4 * Green’s function for hydrogenic ions

The Green’s function for the relativistic hydrogen ions was constructed along
similar lines by Brown and Schaefer [32] and by Wichmann and Kroll [33]
independently. The solution regular at the origin is (3.3.15)
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0) (..
)

x<“+zwf“amaa+L&m+ww—nMﬂm@m}

e ) (3.6.23)
(c—z/c) " {aM(a+1,b;p) — (V' — k)M (a,b; p)}

and the solution giving outgoing waves at infinity is (3.3.17)

(o) =
. <(c +2/) 2 {(V + K)U(a + 1,b;p) + U(a, b; p)}> :
(c—2/0)*{(/ +K)U(a+Lbip) ~Ulabip)})
in which
a=v—v, b=2y+1, p=2>r

where v and A\ have the same meaning as before. The complex parameter z
has been substituted for the energy E and we have suppressed an unimportant
constant factor v/ — k. The bound state apparent principal quantum number
N is replaced by

Vi =Z/\ A=c(l—22/m32ct)/?
and we introduce another parameter
v="1"(1-X/c?)?

so that

V2?2 =2 2

To complete the construction, we need the Wronskian (3.6.16). This is most
easily found by using the limits as p — 0, given by (A.3.15) and (A.3.16)
respectively:

F(27) —2v
M(aaba P) — 17 U(a7b7p) — mp

from which

(p@@m§_+m<@+zhf”«vm+0/@v
Q(r;2) (c—2/0)2 (v —v) — (V' — &)

and
» (c+2/0)'"? %
(p( )(r?z)> S — m)m . jz/c)l/g <<1/7+/<o Jrll)))

Y-V
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so that r(29)
5
A=4y )\ ——F— 3.6.25
A=) ( )
and I )
_ _ TV
A=1/cA= Ty AT (27 (3.6.26)

As a function of z, the Coulomb Green’s function G (7, s; z) has branch points
at z = £c? as in the free particle case. However, the Wronskian A has simple
zeros (so that the Green’s function has simple poles) at the poles of I'(y — v)
when v — v = —n,., where n, is a non-negative integer, as in Section 3.3.2.

An important check on the above results, left as a tedious exercise for
the reader, is to verify that we recover the free particle formulas in the limit
as the nuclear charge Z approaches zero. This entails the use of relations
connecting confluent hypergeometric functions with Bessel functions [5, §13.4,
§13.6]. Although the sum over partial waves can be performed analytically for
the nonrelativistic hydrogenic Green’s function, no similar result is known for
the relativistic hydrogenic case.

3.7 The nonrelativistic limit: the Pauli approximation

The relativistic equations of motion should transform into nonrelativistic
equations in the mathematical limit, ¢ — oo, in which light signals appear
to propagate instantaneously. This limit has been much studied for several
reasons, some theoretical, others more practical. Analytic techniques were all
that were available in the early days of relativistic quantum theory, and a per-
turbation expansion in powers of the fine structure constant, «, threw light
on the size of “relativistic corrections” and on the origin of spin-dependent
effects. The simple Pauli approximation of this section, despite its limitations,
continues to be of major importance in quantum chemistry.

3.7.1 The Pauli approximation

The behaviour of the solutions of the Dirac equation in the nonrelativistic limit
is a matter of perturbation theory, in which the strength of the perturbation
is proportional to a = 1/c. We start from the Hamiltonian form of (3.1.39)

(Hp — E)¢ = {ca- (p — qA) + fmc’® + q¢ — E} ¢ =0, (3.7.1)
In order to pass to the nonrelativistic limit, we shift the energy zero so that
2

e=FE—mc?, || <mc?,

and partition (3.7.1) in the form
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qo—¢ co-IT ¥ (r)
—0
co-IT —2mc®+qp—¢ Y (r)

where the superscripts + and — indicate upper and lower two-component
amplitudes respectively, and

II =p—qA.

This can be regarded as a pair of simultaneous linear differential equations,
of which the lower can be rearranged to read

6 (r) = — {1q‘z"6}1a-ﬂw+<r>.

2mec 2mc?

Pauli’s approximation results from replacing the bracketed term by unity:

b (1) ~ = o It (r)

2me

and substituting this in the upper equation gives
1 +
o-II —o -II+qp—e€p 7 (r)=0.
2m

The well-known algebraic identity (A.2.16)
(0-A)(oc-B)=A-B+ioc-AxB

gives

(o- Mo M)y (r)=IT-II — qgo - curl A)yT(r).

so that 9T (r) satisfies a modified Schrodinger equation

1
{omp =047~ u B o vt ~o (37.2)
where B = curl A is the magnetic induction. The operator (p — qA)?/2m
describes the interaction of a charged particle with a magnetic field of classical
physics described in Section 2.6.4. The new term — - B, which is not predicted
by classical theory, is the potential energy of a magnetic dipole of magnitude
q

o

=L (3.7.3)

u
in the magnetic field B. The operator (p — qA)?/2m embodies the usual
minimal substitution of Section 2.6.4. Dirac’s prediction that the electron
possesses an intrinsic magnetic dipole was a major success of the theory.
The magnetic dipole moment of the electron has been measured to within
an uncertainty of a few parts in 10'? [34, p. 375]. The magnetic moment of a
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lepton, the generic term for a spin-1/2 particle such as an electron or positron,
can be written

=g L
2m
where in terms of the elementary charge e, ¢ = —e for electrons and ¢ = +e

for positrons, m is the particle mass, and s is its spin. The g-factor thus has
the same absolute value for electron and positron and its sign is that of the
particle’s charge. It is conventional to write the magnitude of the electron or
positron moment as
g
fe = T 1B

where up = eh/2m is the Bohr magneton in SI units. Because s = ho /2 for
Dirac electrons, (3.7.2) predicts |ge| = 2. The experimental value for the free
electron or positron differs by the electron anomaly,

el _ lnel

2 KB

)

due to quantum electrodynamic effects. The recommended value [34, Table
IX], a. = 1.159652 1883(42) x 1073, is based on measurements for both elec-
trons and positrons that agree at this level of accuracy. The theory, reviewed
recently by Kinoshita [35], involves perturbative calculations including electro-
magnetic, hadronic and weak interaction contributions, achieving an accuracy
comparable with the experimental uncertainties of order 10~12.

3.7.2 The Foldy-Wouthuysen and related transformations

The Pauli approximation was the earliest attempt to devise an approximate
treatment of the Dirac equation, and it is still a popular method of account-
ing approximately for relativistic effects. The Foldy-Wouthuysen transforma-
tion [36] for a free particle, §2.5.3 and §2.5.4, served to relate the Dirac to the
canonical representation and to throw light on the meaning of position and
spin in Dirac theory. However, the main motivation has been to derive simpler
equations in which relativistic effects are represented by perturbations to a
nonrelativistic model [37, p. 46]. Quantum chemists have made much use of
schemes such as the Breit-Pauli approximation, §1.5.2; see [38] for a recent
review.

The simplest approach is to partition the Dirac Hamiltonian into cou-
pled equations for the upper and lower component as in the Pauli reduction,
§3.7.1, and to try to eliminate the lower component from the equations. The
technique, [38, §2.1], has been developed to give a sequence of “regular approx-
imations” — ZORA (zero order), FORA (first order), etc. — which avoid the
singular effective potentials generated by the Pauli approximation. Another
approach seeks unitary transformations that block diagonalize the Dirac oper-
ator. Because off-diagonal blocks involve odd powers of v matrices, the effect
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is to replace such terms with effective operators in which a matrices only ap-
pear to even order. The earliest programme of this sort was due to Foldy and
Wouthuysen [36]; currently the most popular version is based on the scheme
of Douglas and Kroll [39], and developed by Hess [40] and his collaborators
for applications to quantum chemistry [41]. Another version was proposed by
Jorgensen [42], building on earlier work by Van Vleck. The effective Hamilto-
nian to O(1/c?) is the sum of several terms:

H0202
1 9 1 2 €
1
H, = —8?{[0-17]4“0-11,—@](2)} (3.7.4)

—é {[((p+eA)’+eo-B’>—edivE

—2eo0 - FE x (p—i—eA)}

where IT = p+¢eA and the operators act on the Hilbert space of 2-component
functions.

After subtracting the rest energy term, we are left with the Pauli Hamil-
tonian Hs and the O(1/c?) corrections Hy. In the absence of an external
magnetic field, A = 0, these simplify to

(P | e ..
Hy=—  AwE
4 8c? + 8c2 divE+

e
4c?

o-E xp.

If the external electric field E is due to a point nuclear charge Ze at the origin,
then —e® = —Z/r, —eE = —Zr/r® in atomic units, so that

[(p)?]? B ﬁéB(r) iia L (3.7.5)

Hy = — -
4 8c? 2c? 4¢2 r3

where L = r X p is the orbital angular momentum of the electron.
The classical free particle Hamiltonian (2.6.34) can be expanded in powers
of A = 1/c when p?/c? < 1 giving

2
dHfree<p) =c V 1 +p2/02 =c’ + % — [1;02

2}2

The term of order 1/¢? in this expansion, the lowest order correction for the
relativistic variation of mass with velocity, is the leading term in (3.7.5). The
next term in (3.7.5), the Darwin correction, has an expectation proportional
to the electron density at the origin and contributes only for s-states. The
third, spin-orbit coupling, term contributes only for p, d, .. .- states with [ > 0.
The Darwin term is said to provide heuristic evidence of the Zitterbewegqung
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phenomenon, on the ground that for spherical distributions, the expectation
of V(r+dr)—V (r) is proportional to {(6r)? V2V (r)), with |d7| of the order of
the Compton wavelength //mc. However, this does little to promote belief in
Zitterbewegung as anything more than an unfortunate feature of the procedure
having little or no physical meaning.

Tt is instructive to use (3.7.5) to compute relativistic corrections to the
Schrodinger energy for hydrogenic ions to lowest order. The necessary non-
relativistic matrix elements of r~% s = 1,2,3 will be found in Section 3.3.3.
Because (p)2¥ni(r) = 2 (e + Z/7) Yri(v), (Z/7)y = Z%/n? = —2€,; and
(Z%)r2) 1 = Z*/n3(1 + 1/2), the lowest order mass-velocity term is

[(?\ _ 1 Z\?
< &2 /., 2 et
nl
_ 1z n 3
22t \ [+ % 4 )
Because (63(7)) = |¥n1(0)]? = 8,023 /7n3, the Darwin term gives

TZ 4 74
<2m2¢:26 ('r)> . = 2¢2n3 Or0-

The spin-orbit term has a j-dependence given by

(0-L)jj=(2s-Ly;; =3° 1> - §*
=j(G+1)—11+1)—s(s+1)

where s = $ho so that the quantum number s = 1/2 and

Z 1 A 1
<‘4czrs"'L> . :‘4cz<rs> (25 Ly
nlj n

The hydrogenic spin-orbit energy for [ > 1 is therefore

L z
42 n3(l4+1/2)(1+1)

G-t -

Putting everything together, the total energy to this order is (once again
remembering m = 1 in atomic units)

72 VA n 3
€nlj = _ﬁ - St (j—l-% - 4> (3.7.6)

in exact agreement with the Uhlenbeck and Goudsmit result, §2.4, and the
expansion of the Sommerfeld fine structure formula (3.3.7) to O(1/c?).
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3.8 Other aspects of Dirac theory

The subject matter of this chapter has been directed to understanding the
construction and properties of solutions of the Dirac equation which are im-
portant for the treatment of the many-electron problems that form the core
of this book. As such we have ignored many of the issues that have received
attention from mathematicians and physicists over the last 70 years. The the-
oretical background expounded, for example, in Thaller’s monograph [44],
provides a rigorous mathematical description using linear functional analysis.
Practical methods of numerical calculation must respect this analysis when
relevant. The monograph of Bagrov and Gitman [45] surveys a number of exact
solutions to a number of relativistic quantum mechanical problems involving
Klein-Gordon and Dirac equations, especially involving charged particles in
electromagnetic fields of various conformations. There has also been a good
deal of research into the foundations of electron theory and electromagnetism
whose flavour can be sampled in the volume edited by Dowling [46].
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4

Quantum electrodynamics

Quantum electrodynamics (QED), the study of the motion of electrically
charged particles such as electrons, positrons, and charged nuclei, provides
the formal framework for the relativistic theory of atoms, molecules, and other
forms of matter. Quantum field theory [1, 2], of which QED is an example,
was invented to model physical processes in which the number of particles
is not necessarily fixed. The coupling of the electron-positron field with the
Maxwell photon field in QED allows us to build a relativistic theory of atoms
and molecules. Feynman diagrams serve to clarify the radiative and collision
processes that contribute to atomic and molecular physics. A subset of these
diagrams corresponds to the familiar self-consistent field theory, which is both
the starting point for more accurate calculations as well as a popular model in
its own right. Diagrams associated with “radiative corrections”, which are not
normally included in theories of atomic or molecular electronic structure, pose
additional technical challenges. The interaction of a charged particle with the
fluctuations of the Maxwell photon field leads to a correction to the particle’s
energy and to its magnetic moment, whilst the particle’s charge modifies the
electromagnetic field close by. These radiative corrections can be significant
in some applications.

4.1 Second quantization

4.1.1 Quantization of the Schrodinger equation

The standard theory of quantized fields rests on the elementary theory of
Lagrangian and Hamiltonian methods of Appendix B.9. We start by writing
down a Lagrangian density for structureless particles of mass m moving in a
potential V' (x):

£ o= g (o) () — it () 26(a)

— % 0% (x) - 0 (x) + V()™ (z) (). (4.1.1)
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The complex quantities ¢ (z) and ¥*(x) are to be treated as independent
classical fields. As usual, 9, = 0/0z*, p = 0,1,2,3, but in this section
0o = 0/0t (without the usual factor ¢). One of the Euler-Lagrange equations
is
oL oL
8“ ¥\ *
(0,07 00
The first occurrence of dyt) comes from 9L /I(9y1)*), the second from AL /Ip*.
We recover the usual Schrodinger equation

| . .
= — 500 — 500 — 5 V() + V(@)u(x) = 0.

10t = — % V2i(x) + V(z)h(x); (4.1.2)

the second Euler-Lagrange equation gives its complex conjugate. The momen-
tum conjugate to ¢ will be denoted!

e oL o
and that conjugate to ¥* by
oL 1

We can now construct a Hamiltonian density,
H =" (z) Dot () + o™ (x) m(z) — L
1
= S 0 (@) 0(e) + V()0 () () (4.1.5)

which is just the sum of kinetic and potential energy terms.
In ordinary quantum mechanics, we interpret the dynamical variables g;
and p; as operators satisfying commutation relations

l¢i,pj] = ihdsj,  [ai,q;] =0, [pi,pj] =0,

for all pairs ¢, j. Similarly we now interpret ¢ as an operator on some as yet
undefined space in the Heisenberg picture and replace * by the operator
adjoint ¥f. Then the Hamiltonian operator is

H= /d%% = /d3x {;nva(x) - Vip(z) +V(a;)w(x)w(x)} (4.1.6)

For simplicity, we suppose that the real function V(x) does not depend on
time. Suppose also either that the field variables have commutation relations

! The labelling of = and * looks more intelligible in the context of spinor fields
below.
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[V(@), T (2")] = v(@) T (@) - vi(@) p(z) = *(x —a),
[W(@), p(x")] = [T (), 9T ()] =0, (4.1.7)
or anti-commutation relations
{v(@), 01 (@)} = v(@) T (@) + T (@) p(x) = *(x - ),
{v(@), (=)} = {¢I (), T ()} = 0. (4.1.8)

The remaining results of this section will be derived for the set (4.1.7) but
they also hold for the set (4.1.8).

We must first confirm that this quantization procedure leads to the usual
equations of motion. For a conservative system, the Heisenberg equation of
motion for the field v is

0ot = [¢, H],

where
[v(x), H] = {w(w%/d?’:v’{;nvw*(w’) V() +V(m)z/JT(x)1/J(:c)H .

Using (4.1.7) and (4.1.8) and the fact that V' is independent of ¢ for a conser-
vative system, we find

1
(@) 1] = (o), [ @ vi@) {592 4 V) fute)]
1
= [ @) vt @)] {59+ vie) fuia)
= [ @ o) {54 Vi) o)
_l_ L
= { va +V(a:)}w(w)
from which Schrédinger’s equation,
1
(@) = { -7+ Via) o),
follows. The first line involves an integration by parts and assumes that the

boundary conditions permit surface terms to be dropped. The adjoint equa-
tion,

ittt (@) = { 59 + V(@) o)

can be derived in the samne way.

Because H is a conservative Hamiltonian in which time does not appear
explicitly and [H, H] = 0, its equation of motion reduces to i0p H = 0, showing
that H is a constant of the motion. We expect
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N::/ﬁx¢w; (4.1.9)

to be the operator giving the number of particles in the system. Its equation
of motion is i0yN = [N, H], and a calculation of the commutator along similar
lines show that [V, H] = 0 so that N is a constant of the motion. Next we
show that

IVl (@) = ol(@), [V, o(a)] = —v(a), (4.1.10)

Proof: It suffices to consider the first of these results; the second is obtained
in the same way.

N (@) = [ 0 @) (@) - @)l @)l
~ [ @ vl@) @), vl @)
_ / Pa' ot (@) (@ — o)
= ¢ (a).

Suppose now that N has an eigenstate |« ) with eigenvalue «. Then from
(4.1.10) we obtain immediately

Nyt() |a) = (a+ )i (z) | o),
Noy(z)|a) = (o — () |a), (4.1.11)

Thus 1 (z) operates on | a) to give an (unnormalized) eigenstate of N belong-
ing to the eigenvalue a+1 and () operates on | ) to give an (unnormalized)
eigenstate of N belonging to the eigenvalue o — 1. If the eigenvalues of IV are
to represent the number of particles in the system, « must be a non-negative
integer n = 0,1,2,... Then (4.1.11) shows that (4.1.9) is a consistent defi-
nition of the number operator and that 1f(x) creates a particle at location
@ whilst ¢(x) destroys one. We refer to the state with n = 0 as the particle
vacuum state. 5

4.1.2 Identical particles: the symmetric case

A system of independent particles is said to be indistinguishable if the expec-
tation value of a physical observable is unaltered by permutation of particle
labels. We suppose that there exists a complete orthonormal set of eigen-
states ¢;(x) and corresponding eigenvalues ¢; of the Schrodinger Hamiltonian
on some suitable domain

{-3m 72+ V(@) la) = )
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We can represent the field operators by

Y(z) = Zai pi(z), V'(z)= ZaiT ¢;f(m), (4.1.12)

where if the field operators depend on time then so do a; and a;. We can
determine the a; and aiT from (4.1.12) using the orthonormality of the eigen-
functions, giving

a; = /(b;[(ﬁﬂ)w(:l:) d’z, a; = / WL(iB) i() B (4.1.13)

Multiply the first equation of (4.1.8) by (bl(sc)gbj(:c’) and integrating, we see
that

la;,a;T] = / ol (@) ¢ (x') 8% (x — ') dPx dPa’ = 63, (4.1.14)

and, similarly,
[ai,aj] = [aﬁ@ﬂ] =0.

Thus defining the number operator
Ni = aiTai

and using the orthonormality of the eigenfunctions, we see that
N = ZNi, H:ZNM. (4.1.15)

Because the operators N; commute with each other, they can be diagonalized
simultaneously with H.

Now we can choose a basis of kets [n1,na, .. .) labelled by the eigenvalues of
the operators Ny, Na, ... Equation (4.1.14) implies that the operators a;, a;'
satisfy relations

a;ni,na, ... My, ...) :ng/2 [ny,moy..ym; — 1,00 (4.1.16)
aﬁ |n1,n2,...,ni,...> = ’I’Li—l—l)l/z |n1,n2,...,ni+1,...>

Notice that the n; are non-negative integers, limited only by the fact that
> n; = n for each fixed n. Although the total number of particles, N, is a
constant of the motion, there will be cases in which H induces transitions
between eigenstates of the Hamiltonian; then the N, will change in time ac-
cording to the equation ihdy N; = [N;, H].

The wavefunctions of a system of independent indistinguishable particles
will either be completely symmetric (the case of Bose-Einstein statistics) or
completely ant-isymmetric (Fermi-Dirac statistics). Let X = (21, x9,...2y,)
denote the space-time coordinates of n indistinguishable particles. Let |P),
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|¥) be two states in the relevant Hilbert space H(™). The configuration space
amplitudes are given by the functions

2(X) = (X[9), ¥(X)=(X]|¥),

with scalar product
(®| W) :/quBT(X)W(X) (4.1.17)

where the integration runs over all X = (x1,29,...2,). Let X — X' =
PX denote a permutation of the particle labels X = (x1,25...x,) into
X' = (TaysTay, - - - Ta, ) so that U(X) = ¥ (z1,x2,...2,) maps into ¥ (PX) =
U'(X). Because the linear transformation X — X’ has unit Jacobian, the
value of the scalar product (4.1.17) is preserved, and

(@|w) = (@' |¥)

so that for each permutation P there exists a unitary transformation P : #( — #()
for which
V'(X)=v(PX)="P¥X).

Let O be any observable. If the particles are indistinguishable, then under
permutation of particle coordinates

(®, OW) = (&', OW') = (PP, OPY) = (&, P 1OP V)

so that
O=P'opP,— [0, P]=0.

Thus every such operator O must be a symmetric function of the particle
coordinates X = (x1,xa,...2n).

A transposition 7;; is a permutation in which only two indices, say 7 and j,
are interchanged. A symmetric function is left unchanged by a transposition,

Tii¥(x1,22,...2n) = P(21,T2,...2pn), (4.1.18)
whereas an anti-symmetric function changes sign:
Ti;¥(x1,29,...2n) = —V(21,22,...Tn). (4.1.19)

It is elementary to prove that all symmetric states in H(™ are orthogonal to
all anti-symmetric states, and no observable on %) can couple symmetric
and anti-symmetric states.

Every permutation P can be written, usually in more than one way, as a
product of transpositions. However the number of transpositions in any such
representation is always either even (in which case P is said to have parity
mp = +1) or odd (mp = —1). The set of all permutations on n objects forms
a group: see, for example [3, Chap. 7] or [4, Chap. 17]. We can construct two
projection operators, the symmetrizer S and anti-symmetrizer A
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1 1
S=— Yop A= ~ > wpP (4.1.20)

" PeS, " PES,

which allow us to project any state onto the corresponding symmetric or anti-
symmetric subspace of H(™). We are concerned only with the symmetrizer S
in this section. Suppose we label one-particle amplitudes with eigenvalues «;
so that the amplitude ¢,,(z) occurs n; times in the n-particle wavefunction.
The numbers ni,ns,... define what we may call a configuration. The set of
vectors | n;ny, na. .. .) spans the Hilbert space of realizable states of n identical
Bose particles so that the relations

Z|n;n1,n2....>(n;nl,ng....| =1
(n]

. /A .
(nyni,na....[n)iny,na. ) = o Oyt Ongny, - - -

express the completeness and orthonormality of the set. Consider now the
amplitude

(x1,22,...,2p;n|N1,N0,...) (4.1.21)

n!
- WS bar (21) - - Par,, ()

where the numerical factor in front normalizes the expression. In the next
section, we study the case in which the projection operator S is replaced
by the anti-symmetrizer A; the right-hand side then becomes a determinant.
Expanding in terms of states of the particle at x1 gives

(x1,@2, .., Tpsn| N1, N2y Mgy o) = (4.1.22)
Z ﬁqbai(xl) (@2, 3, ..,Tp;n — 1ny,ne,...,n; —1,..0)
i=1

where the sum runs over all possible eigenstates, empty as well as occupied.
Alternatively, we can write

=~ 1
<o T s M2y ey Mgy evn) = — Qq, (T 4.1.23
(1,2l nr. ) ;\/qu () (4123)

X<.’L‘17$2,...,$j71,$j+1,...,$n;n—1|’I’L1,’I’L2,...,ni — 1,>
Fock space is defined as a direct sum of subspaces,
H=HOoHV o .., (4.1.24)

each of which is characterized by a fixed value of n. The field operators ¢ (x)
and ¢f(z) acting on the elements of Fock space respectively create and anni-
hilate particles:
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OH @) |21, Epein— 1) =02 |z 2y, . i), (4.1.25)
(@) |x1,. . Tpgpsn+ 1) =

4.1.26

(n+1) 1/225 =) | Ty, i1, g1, Tag 13 M), ( )

relating states in the subspace H(™ to those of H (1),

4.1.3 Identical particles: the antisymmetric case

Fermi particles such as electrons satisfy Pauli’s exclusion principle: each non-
degenerate state may be occupied by at most one particle, so that the numbers
n; can only take the values 0 or 1. This can be accommodated by replacing
the symmetrizer S in (4.1.21) by the anti-symmetrizer A, so that

(21,29, .., zp;n|n1,n9,...) = Vil Aga, (21) . .. Ga, (1) (4.1.27)
The anti-symmetrizer generates a determinantal product

¢(Xj1 (1‘1) ¢(Xj2 (xl) s ¢(Xj“ (331)
ba;, (T2) baj, (T2) ... oy, (T2)

<x1,x2,...,xn;n n17n27"'> =

-

bo,. () Gauy, (T0) - - by (100)
(4.1.28)

The determinant vanishes if any two rows or columns are identical, and
changes sign under transposition of either rows or columns. Thus «; can ap-
pear at most once if the determinant is not to vanish so that n; can take only
the values 0 or 1. The subscripts (j1, ..., jn) distinguish the n occupied states
of the full (infinite) list of eigenstates in some order. Expanding (4.1.28) by
the first row gives

(21,22, anin|n1,na, .. ) = 72”3 Pay, (1)

X (=1)%(zo,x3,...,xp;n—1|n1,n2,...,n5, —1,...), (4.1.29)

i

where

is the number of states occupied up to the j;-th. Alternatively we can expand
by the j;-th column, so that

(z1,22,...,zpin|n1,n2,...) = \FZ )" oy, (1)

X (T, L2, B, Tt 1, - -, Ty — L ng,no, ... ony, —1,...). (4.1.30)

i
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The creation and annihilation operators have the properties

a;"|ni,na, .o N, —ni)|ni,Nne,...,n; +1,...
| b > ( ) ( )| b > (4.1.31)
ai|n17n2,...,ni,...) = (—l)sini|n1,n2,...,ni—1,...),

and satisfy the anti-commutation relations
{ai7aj} = {aiT,ajT} :0, {ai,aﬂ} :(5” (4132)

Because {a;,a;} = 0, we have a;a; = 0, and similarly a;Ta;t = 0. Also, as
n; = 0,1, n? = n; and therefore the number operator, N; = a;Ta; is also a
projection operator, as may easily be checked using the relations (4.1.32).

In Fock space, the relations corresponding to (4.1.25) and (4.1.26) are
replaced by

!
~ Val

This result is particularly convenient when constructing matrix elements for
complex electron configurations for operators that act symmetrically on all
the particles present so that

Uiz, ... 0T (x1)]|0) (4.1.33)

Alxy, @, ... xn;n)

n
F(z1,22,...,2p;0) = Zf(xj)
j=1
when they act only on a single particle, or

1
G(xlax% oo 7mn;n) = Zg(x“xj) = 5 Zg(xlvmj)

i<j i#j
when they involve the coordinates of two particles. The Fock space equivalent
operators are

F= /W(w)f(x)w(x) dx (4.1.34)
G= %/ V(@) i(@) gla,2") () (a") d da’ (4.1.35)

in which the order of the coordinate arguments in the field operators is sig-
nificant. This can easily be extended to symmetric operators involving three
or more particles simultaneously.

4.2 Quantization of the electron-positron field

4.2.1 The Furry picture

Furry [5] proposed a formalism that is widely used in atomic and molecular
structure theory. Suppose, as a first approximation, that we can treat the
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electrons as moving independently in a conservative potential field V(). The
unquantized Dirac Hamiltonian in configuration space is

hp =ca-p+ pmc® +V(x), (4.2.1)

where the electron rest mass m = 1 a.u.. When V(x) is negative-definite
(and satisfies other reasonable conditions which we shall discuss later), as for
example in hydrogenic ions,

Z
V(EE)Z—?, 7’=|£L'|,

we know [6, §7.4] that hp has a spectrum consisting of two continua, —oo <
E < —c? and ¢* < E < oo together with a countably infinite set of bound
states in the gap (—c?, +c?) having a point of accumulation at +c?.

We assume that the quantized Dirac field amplitudes can be expanded in
terms of a complete set of eigenstates of hp in the form

Y(z) = Zar¢r(x)a W(Q«") = Zar“/}i(fﬂ)

where a, and a,' are anti-commuting fermion annihilation and creation op-
erators respectively, (4.1.32), and ,.(x) is an eigenfunction of hp with the
energy E,.. Writing

N, = arTa,«

for the number operator we see that, as in Section 4.1.1, not only is the total
number of electrons defined as the expectation of the operator

N=>"N,,

but the Hamiltonian operator is
H= Z N, E,
T

which, because E, can have either positive or negative values whilst N, is a
non-negative operator, can be either positive or negative. Were the operators
a, to satisfy Bose commutation relations like (4.1.14), N, could have arbitrary
non-negative integer eigenvalues and the field could have an arbitrarily large
negative energy. On the other hand, if the operators a, satisfy Fermi anti-
commutation relations like (4.1.32), there can be at most one particle in each
nondegenerate eigenstate in accordance with the Pauli exclusion principle.

We split the energy spectrum S into two disjoint pieces: S+ = {E, | E, >
0}, which includes the positive energy continuum and the bound states, and
its complement S(=) = {E,. | B, < 0} so that the number operator is
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(+)
S B Wl
and the Hamiltonian operator is

(+)
H = ZNHE +>—ZN EC)), (4.2.2)

Likewise, if we write ¢ = —e for the elementary charge on the electron, the
total charge operator, which is also a constant of the motion, is

(+) (=)
Q=—-eY NP —ed N, (4.2.3)

Now according to Dirac’s hole theory, Section 2.5.6, the vacuum state is one in
which the positive energy states are all empty, NT(JF)
ergy states are all occupied, Ns(_) = 1. The vacuum is therefore characterized

by the infinite unobservable quantities

&) )
Qvacuum = _GZ 1, Eoocuum = — Z |E§_)
S s

The hole theory therefore postulates that only the differences Q' = Q —
Quacuum and E' = E — E,qcuum are observable, so that

eZN(+)_|_eZ N( )

(+) (-)
B =Y NGBS 4 Y0 NOED)

= 0, and the negative en-

A “hole” in a negative energy state (Nﬁf) = 0) therefore contributes a charge
+e to @' and a positive contribution |E§7)\ to the field energy. We therefore
interpret such a hole as an “anti-particle”, in this case a positron, carrying
charge +e and positive energy.

To emphasize the interpretation of “holes” in the filled vacuum as anti-
particles, we introduce new operators, b, bST, which respectively destroy and
create antiparticles, such that

by =ast, bt =a,, se8) (4.2.4)

so that we can redefine the field variables as
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) -)
P(@) = arde(@)+ > bilea(2), (4.2.5)

(+) (=)
Vi) = a gl (@) + D bsol(x). (4.2.6)

The non-vanishing anti-commutators become
{arTv as} =0ps, T,8€ S(Jr)v {brTa be} =0ps, T,8€ 8(7)7 (427)

whilst all other anti-commutator pairs vanish.

Any sequence of creation and annihilation operators is said to be in normal
order if it is arranged so that all creation operators stand to the left of all
annihilation operators in the sequence. Thus a,'bs is in normal order, but
arbs' is not. The latter can be put into normal order by transposing adjacent
operators and changing signs as if all anti-commutators vanished. We denote
such a normal product by writing : aTbSJr :, sometimes written N(aTbST), SO
that, for every pair of indices r, s,

D4 0 = +arag, 1 b.bs 1 = +b,.bs,
capal i = —asta,, :b.bl:= —bsTbT, (4.2.8)
capbl = —bsTar, cbeal 1 = —a,Th,.

We suppose the distributive law holds. It is easy to see that (4.2.3) and (4.2.4)
are equivalent to

H=:H:4+FEpcuum:, @=:Q:+ Quacuum, (429)

so that the operators which must be used to give physical results are : H :
and : @ :. The infinite vacuum energy and charge can then be discarded. We
shall later need the normally ordered charge-current density vector

(2) = —ech@y (@) = —ec : B@IY () + flaoum(@)  (4:210)

so that the total charge is @ = [ d3zj°(z)/c.

4.2.2 The free electron case

Textbooks of quantum electrodynamics, such as [1, 2, 7, 8], traditionally
present the canonical quantization of the electron-positron field for free elec-
trons for which the potential V(x) vanishes. This has two advantages: in the
first place, the absence of external forces ensures that all the space-time sym-
metries, in particular space-like translations, can be invoked. Secondly, one
can define the field variables 1 (x) and v'(z) without reference to an eigen-
function expansion (4.2.5). If the electron is firmly confined in an atom or
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molecule, a perturbation treatment encounters difficulties, and the Furry pic-

ture is appropriate. Nevertheless an understanding of the elements of free

particle QED helps to understand QED of electrons in all environments.
The free particle eigenfunctions, (3.1.20), are

Y(z) = e P M u(p)

where the spinors u(p), (3.1.24), are

2\ 1/2 @"
wou= (Y (0 Y
E(|p|) + ¢

for positive frequency (energy), p° > 0, and by (3.1.25),

_Co'.p

Wy — (ElD+ N (o)
0= (“ge) Eo) 1,2

for negative frequency, p° < 0, with

<) o)

The Heisenberg field operators are given by

—(4)

v() =M (@) + (@), Y(2) =9
where, with p® = +E(|p|)/c, the positive frequency components

3 c 1/2 ‘
) (z) = / (Zi)gﬂ () Z a,(p) u™ (p) e =P/h (4.2.12)

0
p r=1,2

(@) + 3 (), (4.2.11)

3 e\ /2 ,
7w = | (ziﬁ() > b v et (4213)

pO

respectively destroy an electron (4.2.12) or a positron (4.2.13), and the nega-
tive frequency components

3 o\ 1/2 _
7@ :/(Zi)l?’)/2 <> Y al@a(p)et Tt (4.2.14)

0
p r=1,2
d3p c 1/2 ) .
WO = [ Gk (p) S b i (p) o (p)etierh (4215)
r=1,2

respectively create an electron (4.2.14) or a positron (4.2.15). The integrals
over momentum replace the sum over eigenfunctions of (4.2.5) and (4.2.6).
Clearly,
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sy —(=) ) —()
YD (z) =9 (z), P(z)=¢ ()
and the vacuum state | §g) is characterized by

—(+)

W () [ 2g) =¥
The anti-commutators
{#9@, v} =0, {$7@, 97 @)} =0
{#7@, 6D} =0, {$7@), vO@)) =0, @217)

()| 2o) = 0. (4.2.16)

are a consequence of (4.2.7); however,

=i (i7"0, + ¢) AP (z — ). (4.2.18)

Equation (3.1.29) has been used in the second line and (2.9.22) and (2.9.16)
are needed for the final result, usually written

{w(_i_) (), J(*)(x/)} _ —iS(+)(.'L‘ —a'), (4.2.19)

and similarly

{1/)(7)(17), E(‘H (:C/)} _ 71'5(*)(‘@ —a'). (4.2.20)

Assembling the pieces, using (4.2.11), gives

{w(m, @(ﬂs’)} = —iS(z —a’) (4.2.21)

where
S(x—a') =SSP (z—2")+ S (z—2).

The equal time anti-commutators are somewhat simpler: using (2.9.20), we
see that
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{v@, 37 @}, == %AE-1)

20=g’0 20=g’0

=+ (@ —a),

equivalent to

{v@,v'@)}| =@ -a),
verifying the canonical quantization rule (4.1.8).

The charge conjugation operator C, (3.1.36), interchanges particle and
anti-particle states:

20=g’0

t

be(@) = C% ' (2), P(x) = C [, ()]

The corresponding positive and negative frequency operators are

N (z)=C [@(:r)r, v (z) = [C*lwgﬂm]t (4.2.22)
so that
3 c 1/

_ 3 c 1/2 )
i (z) = / (2i)€/2 () S bip)al () et (42.20)

0
p r=1,2

where u'"”) (p) = Co()(p)t, reinforcing the interpretation of wﬁ“(a:) as an

anti-particle destruction operator and w£+)(m) as a creation operator. Then,
because C~1S™H) (—z)C = —SH) ()t

{0 @), @)} = —isH (@ - ') (4.2.25)

and

{m(x),ﬁ(x')} = —iS(z — ). (4.2.26)

A covariant expression for the electron number operator N€ is

N = [dora i@ @, @) = [ @i v @) @22

and similarly, the positron number operator is

W:/fﬁﬁwmwww> (4.2.28)

The total charge is then
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Q= /da“xju(a:)/c = —e(N°®— NP), (4.2.29)

consistent with (4.2.10) if we drop the vacuum current, and define the current
as a normal product

Jul@) = —ec: B@) 1" ¥la) : = —eeN(Bla) v ¥(2)). (4.2.30)

Because normal products are designed to have zero vacuum expectation, this

gives us a convenient expression for the vacuum current —e c{(v(x) v* 1 (z))o
in terms of propagators. Using (4.2.11), (4.2.16), (4.2.17), and (4.2.20) we find

(2)6(a') = N@(a)b(a) — iSO (@' - a)! (4.2.31)

<

so that

—ec(ip(x) 7" ()0 = —ec lim (@o, (x) " 1 (2) Po)

= —iec lim tr (y*87) (2’ — x))

r—x’

= —iec tr (v*5()(0)). (4.2.32)

This is infinite, corresponding to the charge of the “negative energy sea” in
the language of Dirac hole theory.

4.3 Quantization of the Maxwell field

Canonical quantization of the Maxwell field is less straightforward because
of of the gauge constraint needed to define the four-potential uniquely. We
saw that Maxwell’s equations can be derived from the classical Lagrangian,
(2.6.19)

1 1
Lom = _ZeoFquW — —j"a,, (4.3.1)
c
and that charge-current four-vector conservation,
Oujt(z) =0,

is satisfied if
ouat(z) = 0. (4.3.2)

The canonically conjugate momenta to the a,(z) are given by

OLem
9(oay.)

= ¢9(0"a’ — 9%") = ¢ FM° (4.3.3)

T =

so that 7° is identically zero. This is inconsistent with the equal time rules
for canonical quantization,
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[au(l‘)a Trl/(x/)]aco:x’o = iéuy(ss(l‘ - xl), (4'3'4)
which cannot be satisfied when 7% = 0. One way to preserve (4.3.4) is to
incorporate the Lorentz condition in the Lagrangian density using a Lagrange
multiplier, A, for example

1 1 1
L=¢ {—4(8#% —Ovay,)(0Ha” — 0%ak) + 2>\(8ﬂa“)2} - Ej“aﬂ. (4.3.5)
This modifies the Maxwell equations so that

O + (A — 1)0"(3,a") = é j (4.3.6)
0

The canonical momenta are now
T =g (F* — Xg"(0,a")) (4.3.7)

so that 7° no longer vanishes as long as A # 0.
When the current is conserved, the four-divergence of (4.3.6) reduces to

Uy = Oa X = auay

whenever A # 0, so that x can be thought of as a scalar field. Classically,
we could solve ths equation uniquely by imposing suitable initial conditions,
for example Y = 0, Jox = 0 as 2° — —oo; regrettably, this would make
X is identically zero. Fortunately, a consistent quantized Maxwell theory can
be constructed using a weaker subsidiary condition. Assume that the field
operators are Hermitean, with the equal time commutation rules

[Boa, (), ay(z")] o_ 0 = —icgud®(x — x') /€0, (4.3.8)
equivalent to (4.3.4), together with
lap(x), av(@")] o_0 =0, [Goau(x), Boay(x")] o_ 0 =0. (4.3.9)

Because gop = —g11 = —¢22 = —g33 = +1, the rule (4.3.8) for time-like
components has a different sign from that for space-like components.
Now set A = 1 for simplicity, so that the free field form of (4.3.6) is just
the wave equation
Oa,(z) = 0.

As in the free particle case, it is convenient to expand the field operator
components in plane waves so that

/ d®k
27‘(’ 60

xz{w (DKo H T 4 eV 1) M (k)R (43.10)

m
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where the four-vector k* = (ko, k) defines the direction of travel of the plane
wave and, as the particles are massless, k* = ko = |k|. The four linearly
independent polarization vectors e()‘)(k), here taken as real, are chosen so
that

N (k) - MR (k) = g (4.3.11)

where g”‘/ is the Minkowski metric tensor. We define

3 3

cu(k) = Z 68\) (k)™ (k), cL(k) = Z GLA)(k)c(A)T(k). (4.3.12)

A=0 A=0
Then the commutation relations (4.3.8) and (4.3.9) are satisfied if

[eu(k), el (k)] = —guvkod®(k — k'), ko= |K|
[ep(K), co (K)] = [l (k). el (k)] =0 (4.3.13)

from which we get
lau(x), ay(2)] = —icguD(x — ') (4.3.14)

where, as in Section 2.9.3, o D(x) is given by (2.9.13) with the mass m set
Zero.
However, all is not yet quite secure. Suppose we define the vacuum state
|0) by
cu(k)[0) =0,

for all k£ and p. Ignoring polarization for the moment, consider a one-particle

state B
C
1) = m ?0 f(k)CL(k)\ 0)

Then a short calculation gives

c 3
(111) = =g ko 010755 [ GG

Although space-like components g = 1,2,3 make positive contributions to
(1]1), the time-like component p = 0 has a negative contribution. Thus (1| 1)
is not positive definite for all non-trivial vectors | 1) and so the span of all such
vectors is not, as it stands, a Hilbert space.

Until 1950, the only way to avoid this inconsistency was to abandon mani-
fest Lorentz covariance and to eliminate the scalar and longitudinal modes
with the aid of the (noncovariant) Coulomb gauge condition, divA = 0
(2.6.26). The Hamiltonian density H = T follows from (2.7.9) and (2.7.12)

1 1 )
H:TOOZ§eO(EJ_-EJ_+02B-B)+§p¢—gJ_.A (4.3.15)



4.3 Quantization of the Maxwell field 199

where j | = J —¢g grad 9¢/0t satisfies the transversality condition divj, =0
and F; = —0A/0t and B both have zero divergence. Then Gupta [9] found
a manifestly covariant way to quantize the free Maxwell equations that treats
all four components of a* on the same footing and Bleuler [10] extended his
argument to include the coupling to the electron field. This Lorentz covariant
and gauge invariant formalism gives physical results which are identical to
those derived from the Hamiltonian density (4.3.15) by restricting the class
of admissable vectors | 1) to a proper Hilbert space.

We need only a brief sketch of the Gupta-Bleuler construction. Were the
Lorentz condition to hold only in the mean, we should expect that the relevant
Hilbert space would contain only states | ) for which

(¢ |Opa [4) = 0;

However this is still too restrictive and it is sufficient to require only that
the positive frequency part of (4.3.10) annihilates any state in the one-photon
space Hj:

D)y =0, |¥) € M. (4.3.16)

From (4.3.10),

(+) / C dsk‘ 3 ik
o w — § kP k —ik-x
HCL (1’) ? 2(27'[')360 / kO = CM( ) € ’

so that (4.3.16) simplifies to
kteu(k)| ) = 0. (4.3.17)

To make things specific, we now take € = n, where n is a unit vector along
the time axis, €2 = k/k" along the direction of propagation, and €', €2 perpen-
dicular to €3 so as to satisfy the orthogonality conditions (4.3.11). A general
n-photon state can be constructed as a linear superposition of n-fold products
of states in Hy, in particular those of the form

|9) = [Yr) X | D) (4.3.18)

where | 1y,) involves only products of photon operators polarized in the trans-
verse directions 1 and 2, and | ¢) involves only the 0 (scalar) and 3 (longitu-
dinal) polarizations. Because (4.3.17) automatically annihilates states of the
form | vy,), we need only consider its effect on the | @) states. With our choice
of coordinate directions, (4.3.17) reduces still further to

[co(k) — cs3(k)]| ¢) = 0. (4.3.19)

The number operator for scalar and longitudinal photons is

N = / % [es (R)es (k) — col ()eo (k)]
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which will have eigenstates | ¢(™) with eigenvalue n, so that in general | ¢)
will be a linear superposition of states satisfying (4.3.19):

[¢) = dn|6™), [6©)=]0).

This entails
n (@ [6")) = dng
so that all such states with n # 0 have zero norm. Only the term with n =0
contributes so that ||¢||? = |do|> > 0. With this constraint, the elements of
‘H, form a proper Hilbert space.
Whilst a lot of arbitrariness about the states |¢) remains, it does not

affect the expectation values of observables. Thus the Hamiltonian for the
free Maxwell field is

= - —cC ct %

- [ & dwems

Bk (S~

- /170 {Zcﬂ(’“)cl(’f) —COT(k)co(k)}hko, (4.3.20)
i=1

so that, taking account of (4.3.19), its expectation value for the state | ) is

Wi _ (o [ SR @ bk )
wloy ~ (o [ 1r) - @3

We get the same result for all states of the form (4.3.18) whatever the choice of
| #), so that the vacuum state, | ) = | 0), can be selected as the representative
of the equivalence class satisfying (4.3.19). The same sort of calculation gives
the total 4-momentum associated with the field as

J &k /ko Zi:l,Q T (k)c (k) hk ) ¢tr>
<¢ | ¢> B <¢tr | ¢tr>

The Gupta-Bleuler indefinite metric formalism plays little part in the
rest of ths book. However, the full Hilbert space is needed for sums over
a complete set of intermediate states, and then states with more than one
scalar /longitudinal photon must be present to preserve locality properties.

W Pl (¥

4.4 Interaction of photons and electrons

4.4.1 The equations of motion

Most applications of QED in atomic and molecular physics assume interaction
of the quantized electron-positron field with the quantized photon field in the
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presence of classical electromagnetic fields due to the charged nuclei. Thus,
high precision tests of QED probe mainly the electromagnetic interactions of
atomic electrons with the internal structure of heavy element nuclei [11, 12].
For simplicity, we shall adopt the Born-Oppenheimer approximation, which
fixes nuclear positions and neglects contributions due to nuclear recoil. These
simplifications can be relaxed when necessary.

The Lagrangian density for the coupled fields is

L(x) = LN (2) + Lp(x) + Line(z) (4.4.1)

where 1 1
E()‘)(JJ) = —160 F ., F" + 560/\)(2, x(z) = 0,a"(x)

em

is the Maxwell field Lagrangian with some gauge parameter A as in (4.3.5),
11—
Lp(x):= 3 P (iv" 0y — e (anue)p — €) ¥

1 — — _
+§ (—ia;ﬂW“ - ew(anuc)u'}/u - C¢) w

is the Lagrangian for the electron-positron field moving in the classical elec-
tromagnetic 4-potential (@nqyc),(2) due to the nuclei (2.5.12), coupled to the
photon field through

1.
Lint(x) = —E]“(x)a“(x).
The field equations deduced from this Lagrangian are
(i7" 0 — ev*(anuc)p — €) ¥ = ecy*au(z)(),
—iOﬁ’;ﬂW“ - ew(anuc)uryﬂ - Cw = €C¢($)’7”au($)7 (442)
0 FM (z) = 5" (x)/eoc.
The 4-current density of electrons and positrons in the quantized theory is
given by
, 1 = "

J () = —5ec [Fa) 2", $(a)] (44.3)
which is formally the same as (4.2.30), though here the operators 1 and 1) are
determined in the presence of the external field. B

Equations (4.4.2) describe the evolution of the operators 9, ¢ and a,(x)

in the Heisenberg picture, the state vector |¥) being kept fixed. We can write
down equal time commutation rules

{v(@), 9"}, _p =007 (@ — )
(@), (@)} gymay = {¥(2). 9N}, _,, =0

(4.4.4)
[a (), Boay ()], _,, = —icgud® (@ — ') /e

(@), @)y = [0, 0u(0)],,_,, = 0.
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Commutation rules for the operators at different times require solution of
the coupled equations of motion, and are therefore impossible to write down
simply. However, the current is conserved,

au j”(l‘) = 07

and so the total charge operator

Q= —% / do"(z) ju(x) (4.4.5)

taken over a space-like surface o is independent of o and is constant. It follows
that

Q@) = +ev(@),  |Q.B(@)] = i), (4.4.6)

so that the Heisenberg operator v(z) destroys an amount of charge —e or

creates an amount of charge +e. Similarly, ¢)(x) destroys an amount of charge
+e or creates an amount of charge —e.

4.4.2 The Furry picture

The complete Hamiltonian for the system corresponding to the Lagrangian
density (4.4.1) is
H = Hep + Hp + Hipy. (4.4.7)

After dropping the interaction with the charge-current terms, the Hamiltonian
for the Maxwell field (4.3.15) in Coulomb gauge can be written

1
H,, = /d3x 5eO(EL -E, +*B- B), (4.4.8)
or, if quantized according to the Gupta-Bleuler scheme,

3
Hem:/% Z CZT(]C)CZ(]C) hk’o (449)

i=1,2

where only transverse modes appear.

So far we have assumed that the electrons interact only with bare nuclei,
represented by the term —e (anuc),(x)y*. Whilst this is a valid starting point
for atomic and molecular calculations, it is usually better to add an interac-
tion, U(x), which represents the mean field screening of the nuclear charges by
the ambient electrons. This may be a (Dirac-)Hartree-Fock potential, or else
a simpler parametrized local model potential [13]. The Furry picture states
will be determined from a normal ordered quantized Hamiltonian with a local
potential, V(x),

Hp = / Yl (2) {cap+V(z) + B} ¥(a) : dx; (4.4.10)
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If the nucleus is treated as a point charge, then

V(z)=—— +Ul(x).

||

When the field operators are expanded in terms of the eigenstates of the
unquantized Hamiltonian (4.2.1) using (4.2.5) and (4.2.7),

(+) (+)
Hp =) afa. B, —> bib, E.. (4.4.11)

The Hamiltonian operator (4.4.7) can be partitioned as
H = Hy+ Hy, (4.4.12)

where
HO = Hem + HD7

describes the uncoupled fields (including the mean field potential) and,
(2.9.29), the perturbation

1
= [ {5 o) - vGe) 0@ vt s o
contains a balancing counter-term U(x).

4.4.3 The interaction picture

In the Heisenberg picture, the states are fixed but the operators evolve in
time, whilst in the Schrédinger picture, the unperturbed states, ¥(t), evolve
according to the equation

U (t)
ot

= Hyw(t), (4.4.13)

where, of course, Hy is independent of time. The connection between the two
pictures is provided by the formal canonical transformation

U(t) = e ol g (4.4.14)

where @ is the state vector in the Heisenberg picture. Let O be some operator
in the Schrédinger picture. Matrix elements must have the same value in both
pictures for physical consistency, so that

(Za(t)| O [W(1)) = (Pa| O(F) |By), (4.4.15)

and the Heisenberg operator O and the Schrédinger operator O(t) must be
related by
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etitlot 9 g=iHot — O (). (4.4.16)

Differentiating (4.4.16) with respect to t gives the Heisenberg equation of
motion

Z_80(15)
ot
The stationary states @, of Hy will satisfy

= [O(t), Ho). (4.4.17)

HO b, = FE, Qja;
and it follows from (4.4.15) that
(@a| O(t) |By) = B F)N(D,| O |By). (4.4.18)

In the presence of the interaction Hy, the system evolves in the Schrodinger
picture so that

10, ¥ (t) = (Ho+ H1) ¥(t). (4.4.19)
Define the Dirac (or interaction) picture vector ¥p(t) by
Wp(t) = eHoly(t), (4.4.20)
with equation of motion
10 Wp(t) =V () Up(t), V(t)=eHot {qyemiHot (4.4.21)

In the absence of interaction, V(t) = 0, the state ¥p(t) is independent of time
and coincides with the state vector of the Heisenberg picture. The label D
can now be dropped provided we stay in the interaction picture.

Equation (4.4.21) is the usual starting point for solving the interacting
field problem. Define U (t, ty) to be the time-development operator connecting
the interaction picture vectors at times t and t,

U(t) = Ult, to) ¥(to), (4.4.22)
so that U(t,tg) satisfies the differential equation
10 U(t, t0) =V (t)U(t, o), (4.4.23)
with initial condition U (g, tp) = 1. State normalization is preserved if
Ulty, 1)U (t1,t0) = Ulta, to), Ult,to) = U H(to,t) = Ul(te,t) (4.4.24)

Equation (4.4.23), with initial condition U (¢g,t9) = 1, is equivalent to the
Volterra integral equation

U(t,to) _1—z/ VU to) dt’ (4.4.25)
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which, for continuous V(¢'), can be solved iteratively using the sequence [14,
p. 250]

t
UO(t,to) =1, U™(t,tg) =1—i / V()Y U™t to) dt’,

to

for n =0,1,2,... This generates the Neumann-Liouville series solution

Ut to) =1 —z’/t ity V(t)
+(_Z~)2/t dt /tl V(t) V(ta)

+(—¢)3/ dtl/l dt2/2 dtz V(t1) V(ta) V(ts3)
+... (4.4.26)

Consider the n-th term of (4.4.26). Because ¢ >ty > ... > t,, the product
of interactions is in time-ordered form, so that we may as well write this as

(—i)" /tt dty /tt dts /tt dt, TV (t1) V(t2) ... V(tn))

This expression is symmetric with respect to the interchange of the arguments
t1,...,t, because each V(t) contains an even number of fermion operators
and a photon operator, so that we can now average over the n! different
permutations of ¢1,...,t, giving

Ult,to) =14 Y U™(t,t1) (4.4.27)

n=1

:1+T§(—i!>" /tt ity /tt dts /tt ity T(V (1) V(ta) .. V(b))

n
t
T eXp{—i/ dt1V(t1)}
to

is often used for the infinite sum on the right-hand side of (4.4.27). With this
notation, and with V(¢) defined in terms of the Furry picture Hamiltonian
(4.4.12), we find that the system evolves according to

The symbol

Ult,to) = T exp {—Z /tt it /d3x1 D) (—ee)y b (zy) - Au(xl)} ,
’ (4.4.28)

where

Ap(@) = au(x) — A (2),
in which Af(z) is a classical four potential equivalent to the counter term
U(z) of (4.4.12).



206 4 Quantum electrodynamics
4.5 Wick’s theorems

Wick’s theorems [15, 16, 17] give a systematic way of reducing the collection
of operator products which occur in (4.4.27). The first theorem expresses a
product of field operators as a sum of normal-ordered products, the second
expresses a product of field operators as a sum of time-ordered products.

In this section we denote any quantum field at the space-time point x
by ¢(z), be it scalar, spinor or vector in character. We have seen that we
can always decompose a field in the manner of (4.2.5) and (4.3.10) into two
parts, one with positive frequency time-dependence, the other with negative
frequency time-dependence, so that

¢(z) = o (@) + ¢! () (4.5.1)

The positive frequency parts are associated with annihilation operators and
the negative frequency parts with creation operators. We can treat both com-
muting and anticommuting fields together by writing

la,b],, = ab+ nba,

where n = +1 for the Bose case and 7 = —1 for the Fermi case. This is, of
course. a c-number. We next note that
6(2)6\) = N (9(2) ') + |67 (@).0 1 w)] - (452)

where N(¢1) denotes the normal product of ¢ and 1. We now define the
contraction of two fields as their corresponding vacuum expectation value:

o(2)0'(y) = (0] ¢() $(y)| 0) (4.5.3)

——

By definition, a normal product has a null vacuum expectation value, so that

¢(x) 9'(y) = N (¢(x) 61(y)) +o(x)1(y) (4.5.4)
——
Now consider a more general product of field operators ¢; = ¢;(x;). We
define
N(¢1~"¢j"'¢k"'¢n) (4.5.5)
~—

= (=1)" ¢jdr N (¢102-- ¢j—10j41 Ph—10ks1 - Pn)
NG

where p denotes the number of interchanges of Fermi operators needed to
rearrange the ordered set to bring the contracted pair ¢; and ¢;, to the extreme
left. Movement of boson operators does not affect the value of p. Although this
notation permits us to state Wick’s theorem concisely, it is formally somewhat
inconsistent as the vacuum expectation of a normal product is zero, so that
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contractions inside the normal product are not formally permitted. However
if we accept (4.5.5) as a definition of the left-hand side, we can write

1 =N (p1--dn)
+N(¢1¢2"'¢n>+N(¢1 ®2 ¢3"'¢n)+--~
~~—~~ ~—

+N<¢1¢2 ¢3¢4"'¢n) +...
—~— =~
. (4.5.6)

The number of non-zero terms depends on which pairs of operators have non-
zero contractions. The maximum number of terms will appear if there are
no zero contractions; then the first line of (4.5.6) has a single uncontracted
term; the second has (%) single contractions as defined by (4.5.4); the third
has %(g) (";2) double contractions, and so on. The straightforward proof of
(4.5.6) is inductive, and can be found in many of the standard textbooks such
as [2] as well as in the original papers.

The second theorem is used for reducing time-ordered products such as

appear in (4.4.27). We recall first that

o(2)9l(y) 2 > P

T (p(x)0'(y)) = {n S()d(a) 20 < 4

where again 77 = +1 for Bose fields and n = —1 for Fermi fields. Using (4.5.3),

N (¢(z) ¢(y)) + ¢(2) p1(y) 2° > y°
—

nN (81(y) ¢(z)) +n ¢'(y) ¢(x) 2° < ° (4.5.7)
——

T (¢(2)o'(y)) =

Now because 7N (¢'(y) ¢(z)) = N (¢(x) ¢!(y)) the normal products are un-
changed, and we can define a time-ordered contraction such that

—— (@) ¢1(y) 2° > y°
O@W) =\ ) S a(e) 20 < 4 (4.5.8)
~——

so that (4.5.7) reduces to

—_—
T (6(2)6'(y)) = N (6(z) 6'(y)) +(2)9(y) (4.5.9)

which allows us to express the time-ordered contraction as a vacuum expec-

tation value
—~

3(2)0'(y) = (0| T (6(x)9'(y)) |0). (4.5.10)
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Thus for time-ordered products, we replace (4.5.6) by

~ = ——~
N<¢1¢2"'¢n)+N(¢1 P2 ¢3"'¢)n>+~~

—
N (¢1¢2 ¢3¢4"'¢n> +
. (4.5.11)

4.6 Propagators

Time-ordered contractions can be regarded as propagators, proportional to
the causal Green’s functions defined in Chapter 2, which allow us to relate
the fields at different space-time points.

4.6.1 Photon propagators
The Maxwell field variables in Feynman gauge, (4.3.10), are

a,(r) = afj—)(l‘) + a,(;)(x) (4.6.1)

/ 3
CL(+) / d k —zk~w7
27r )3eg
3
o (x /d k (k) etike
27r )3eo

are the positive and negative frequency parts. The contraction of a pair of
these field components gives

(0] T(au(z)an(y)) | 0) (4.6.2)
= (0 af? (z) af” (1)8(® — y°) + alP (y) a7 (2)6(y° — 2°) |0)

Using (4.6.1) and the commutation relations (4.3.13) reduces this expression

to
9w dif —ik-(x—y)p(,.0 _ 0 —ik-(y—z)pn(, 0 _ .0
(27r)360/ 2ko {e Oz"—y7) +e 0y —= )}

where

The dependence on the relative time 7 = 2% — y° can be written

1 “+oo —12T d
*Zko‘rg( ) / (& Z.

2i o ko —2z—ie
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where € > 0. By first relabelling so that kg = |k| and then identifying z with
the time-like integration variable kg, we get

: d*k  eik-(e=y) 1 1
Z9“”/(277)460 2[k] {kz|—k0—ie+|k|+k0—ie}’

so that, compare (2.9.32), we have

Z 5 4 e—ik.(m—y)
(0] Ta () () | 0) = — 22 /(C”c |

€0 2m)* k2 +ie
=iD},(z —y). (4.6.3)

Similar expression can be found for other gauges. For example, if we start
from the Lagrangian (4.3.5) and the corresponding modified Maxwell equation
(4.3.6), we find [2, equation (3-131)]

(01 T(ap(z)an(y)) 10) (4.6.4)

_ —’L/ d k? e—ik.(x—y) gl“/ + 1-— )\ kukl/
(2m)%eo k2 + ie A (k2 +i€)?

which recovers the Feynman gauge propagator (4.6.3) when A = 1 and the
Landau gauge propagator when A — oo. The corresponding result for the
Coulomb gauge is given by (2.9.35) in momentum space or by (2.9.36) and
(2.9.40) in coordinate space:

(0] T(a(x)ay(y)) |0) = iDg, (z — y). (4.6.5)
where, setting R=|R|, R=x —vy, 0; = 0/0R;, i =1,2,3,
(2" —y°)
DS\ (z—y) =22 =Y
ool —y) AreoR

Di(x —y) = Dig(z —y) =0,
dz o o ez’\z\R ei|z|R -1
Di(x—y)=— [ c—e =@ )35, ——— 49,0, ———— ¢
5(T=v) / o C { T 4meoR 0 dmeg R |z|?
It can be shown, using (4.6.4), that integrals like
JOIT @) 10 Wity

are independent of the value of A when j”(y) is a smooth conserved current,
so that the corresponding physical results are also gauge independent.

4.6.2 Electron-positron propagators

The contraction of two free electron field operators can be written in terms
of the Green’s function of (2.9.42)
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(O T (W) Ty () | 0) = — 5 Sras(w — 1), (46.6)

where the spinor indices label rows and columns of the propagator. The order
of the factors is significant; it is easy to see that

(01T (@5(y) (@) |0) = +3 Srap(e — 1), (46.7)

so that it is important to respect the order of the contracted operators in the
case of electron field operators. In the Furry picture, the result, (3.6.1), is

¢ —iz(z—y)°/c
SF(-Z'7 y) = ; o dz G($,y7 Z) Yo € (z—y) /‘.
F

with
ér( bs(x
c2) = 4.6.
o= T HE AL 5 BBy

where the sign of € ensures that positive energy states propagate forwards in
time and the negative energy states backwards in time.

4.6.3 Feynman diagrams

The Hamiltonian density for interaction of the quantized Maxwell and electron-
positron fields in the Furry picture is given by (4.4.11)

Hy(z°) = / {1 D) s au(x) — Ulz) 9T (2) v(2) :} d>x (4.6.9)

c

where j#(z) = —eci)(x)y*4)(z) is the electron current operator and a,,(x) the
Maxwell field operator. The field operators can be decomposed into positive
and negative frequency components,(4.2.5) and (4.2.7) (or for free electrons
(4.2.11) and (4.2.12)), for which

¢ () destroys an electron at x; (~)(z) creates a positron at =

@(—H(x) creates an electron at x; E(_)(x) destroys a positron at .

Feynman [18] represented operators by directed lines in a space-time diagram.
In Fig. 4.1, time increases up the page: the operators i are represented by
lines (up or down) directed away from the space-time point  and ¢ operators
by lines directed towards z. Positive frequency lines are below (earlier than)
x and negative frequency lines above (later than) x
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Time
—() b
o (@) ) P () ()
X X
Creates e~ Destroys e~ Destroys et Creates e™ Space

Fig. 4.1. Feynman representation of field operators.

We start with the case of an electron interacting with a classical static
charge density:

3% (x) = cp(x).0"°.

According to (2.9.29) this generates a four-potential
1 .
() =3 [ Dl = 25" @)t

The configuration space propagator in Coulomb gauge is given by (2.9.36)
and (2.9.40), so that the potential

e oo [ pE) 5,
A (z) = Treg / o — :c’|d x'. (4.6.10)

is purely electrostatic. For the specific case of a point nucleus of charge +Ze,
for which p(x) = Zed(x), we recover the familiar result

0 OZB
Al (z) = £ )
u(@) dmeg| x|

We can therefore write the contribution to the interaction Hamiltonian as

/ T @)V (®)(2) : . (4.6.11)
where the potential energy is
Ze? 1 Z
V(w) = _mm = —m a.u.

The four normal ordered terms give diagrams that are shown in Fig. 4.2. Each
diagram describes an interaction a space-time point x, represented by a vertex
with two electron lines, one entering and one leaving, together with the local
potential V (), represented by a horizontal dashed line terminating in a cross.
From Fig. 4.1, we see that the four diagrams can be interpreted respectively as
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37 (@) () 7 (@) v ) (@)

PP () @) YD) A (@)
(a) (b) (c) (d)

Fig. 4.2. First order processes in an external field: (a) represents electron scattering
by the potential V (), (b) scattering of a positron; (c) represents pair destruction
and (d) pair creation.

a scattering of an electron by the potential, scattering of a positron, creation
of an electron-positron pair, and destruction of a pair at the point z. All these
processes have a null expectation for the vacuum state because of the normal
ordering. For a single particle state, we can suppose, for example, that the
initial state is that of an electron in state a and the final state is also that of
an electron in a state (3, so that

|®o) = al, | o), (Dg|=(Po|ags.

Only one term of (4.6.11), namely

/ OL(2)V (2)pa(2)d*x (4.6.12)
survives, giving the expected result for scattering of an electron by the poten-
tial V(x) from the state « to the state S.

4.6.4 Second order interaction: U (t,t,)
Next consider the second-order QED contribution U (t,#y) to (4.4.26),
62 A e ol v e
e [T @) A5 T ) A ) disdy.
(4.6.13)

where we have retained the four-potential to ease the transition to the quan-
tized field case. Wick’s theorem (4.5.11) gives

T (N () 7 A5 () () N (0) 7 A5 (3) 3)
= N (¥(2) " A}, () ¥(2) (y) 77 AL (1) D (y))
— SN ()7 A5 (@) S, ) 7 A () ¥ ()
N (B0) 7 A5 ) Sy, 7)1 AL ) 6 x)
— AL () S, ) 7 AL () Sy, 7) (16.14)
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We ignore the first term for the present. The next two terms generate the
diagrams of Fig. 4.3 representing processes involving two interactions with
the external field whose overall effect is simply electron scattering, positron
scattering, pair destruction, and pair creation as in Fig. 4.2. The only new fea-

D (y)
xR Y
XN T
—(+)
) (x) v ()
(a) Electron scattering (b) Positron scattering

D@ TPy

(c) Pair destruction (d) Pair creation

Fig. 4.3. Second order processes in an external field.

ture of these diagrams is the internal line connecting x and y, which indicates
propagation of the electron/positron field amplitude represented in (4.6.13)
by the propagator —3Sp(x,y). Clearly permuting the labels  and y does not
alter the value of the corresponding integral, and we can add the two inte-
grals to cancel the pre-factor 2! in (4.6.13); the same thing happens in higher
order diagrams. The last term of (4.6.13) has no free lines and represents a
vacuum process: the corresponding diagram, Fig. 4.4, describes the creation
of an electron-positron pair at y and its destruction at = leaving the vacuum
as it was. Such diagrams are found to have an infinite negative imaginary
part, independent of the field. It can be shown that they do not contribute
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Yy

—35F(z,y) —3S5r(y, z)

x
Fig. 4.4. Second order vacuum process in an external field.

to amplitudes for observable processes so that they can be dropped from the
calculation.

The one-to-one correspondence of the terms of (4.6.14) with the Feynman
diagrams of Figs. 4.3 and 4.4 illustrates an important general result. In this
approach, graphs such as which are similar except for the labelling of vertices
can be treated as distinct. One unlabelled diagram is equivalent to a class of
labelled diagrams, as we saw in the case of the two middle terms of (4.6.14). We
can therefore start with the Feynman diagrams and write down the matrix
elements without performing the detailed manipulation required by Wick’s
theorems. However, the diagram approach requires more care to ensure that
each term is prefixed by the correct sign.

Electronic structure calculations also require the calculation of matrix el-
ements involving virtual photons of the quantized radiation field. Figure 4.5
shows the two disconnected diagrams corresponding to the first term of the
Wick decomposition (4.6.13),

N (P(x) v an () (x) P(y) v au (y) ¥(y)) ,

in which a photon is either emitted or absorbed at each vertex. These processes
only give nonvanishing amplitudes for bound electrons, as it is not possible
to satisfy all the conditions for momentum conservation at each vertex for a
free particle.

The remaining diagrams of this order, Fig. 4.6, have internal photon lines.
Diagrams 4.6(a) to 4.6(d) represent particle-particle scattering with a photon
being emitted at one vertex and absorbed at the other:

N (P(2) v ¢ (x) D (x — ) () v () »

together with a similar term with = and y interchanged. Figure 4.6(d) rep-
resents annihilation of an electron-positron pair with emission of a virtual
photon, followed by the creation of a pair of particles at a later time.
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Fig. 4.5. Disconnected pair of first order diagrams.
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Fig. 4.6. Second order diagrams.
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Figure 4.6(e) shows processes in which a pair of electron operators is con-
tracted, corresponding to the kernel

N (¥(x) v au(x) Sp(z, )7 au(y) (y)) -

Here two of the diagrams represent Compton scattering of a photon from
an electron or positron, whilst the others involve destruction of an electron-
positron pair with two-photon emission. There is a corresponding diagram for
the inverse process. Figures 4.6(f) and 4.6(g) describe respectively the lowest
order contribution to the electron self-energy and the lowest order vacuum
polarization. Their kernels

N (Y(x) " Sp(z,y) 7 ¥(y)) Duw(z —y)

and
N (au(x)ay(y)) 4" Sk (x,y) 7" Skr(y, x)

are examples of loop diagrams, both of which give an infinite result; a process
of renormalization is needed to extract finite physical results. Finally, Figure
4.6(h), in which there are no free lines,

Sk, y) v Sr(y, I)DMV(I )

gives the second order amplitude for the vacuum to remain a vacuum. We
shall examine such terms further in Section 4.7.

4.6.5 Feynman rules

By writing down the Feynman diagrams with n vertices, we can obtain all
contributions to the n-th order U-matrix directly. We drop all vacuum bubbles
and retain only topologically distinct diagrams, that is to say diagrams in
which the vertices are not labelled and which cannot be deformed into one
another without breakage. The expansion (4.4.28) (in covariant notation) is a
sum of terms

lim U™ (t,t) = <_Z> /d4x1.../d4aﬁn
t’——o00,t—+00 c

T (D) (e () : . D) (—er™ blan) )
X ay, (x1) ... apu, (@n). (4.6.15)

The expression for each Feynman diagram can be written down according to
the following rules:

(a) A pre-factor (—i/c)™ from the perturbation series.
(b) A factor —e(y")ap from each bilinear expression

Za,@ to (@) (—ev ) apthp(;) 1
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(c) A factor iDp,, (z—y) for each internal photon line connecting the vertices
z and y, where p labels the Dirac matrix associated with x and v that
associated with y, arising from (0| T'(a,(z)a.(y)) | 0).

(d) A factor —1Spap(z,y) for each internal electron/positron line directed
from y to x, arising from (0] T'(¢a ()Y 5(y) | 0).

(e) A creation/destruction operator 1) (z) or E(i)(x) or a&i)(x) for each
external line entering/leaving x.

(f) A factor -1 for each internal fermion loop such as the vacuum polarization
bubble, Figure 4.6(h).

(g) Integrate over all variables x1, ..., Zy,.

It is important to assemble each incoming fermion spinor, vertex operator,
propagator and outgoing fermion spinor along the fermion line, following the
arrows, in order to get a well-formed matrix element.

4.7 The S-matrix

The states of the interaction picture evolve in time according to (4.4.22) and
remain constant when V(¢) vanishes. Suppose that the interaction is switched
on at t = —T'/2 and switched off again at t = +7'/2. Initially, we suppose the
system is in a (Heisenberg) state @,

U(t) = by, t<-T/2.

The system evolves according to (4.4.22) from ¢t = —T/2 to t = +T/2 into a
linear superposition of (Heisenberg) states &g and subsequently

U(t)=w(T/2), t>+T/2.
We define the S-matrix by writing

U(T/2,-T/2)|P,) = N(T) Z Spa(T/2,-T/2)| Pp) (4.7.1)
B

where N(T) is a normalizing constant. If the states &, and $g are orthonor-
mal, we see that

Spa(T/2,=T/2) = (P [U(T/2, =T/2)[ @) /N(T).
We define the elements of the S-matrix for the transition from @, to ®3 by

Spa = Jim Spa(T/2,~T/2) (4.7.2)

whenever the limit exists.
In QED the vacuum state, &g, is one for which there are no free electrons
or positrons and no photons, and we shall choose
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N(oo) = lim N(T) = (g |U (o0, —00)| Po).

T—o

We can assume that @ is unique so that (@, |U (o0, —o0)| Py) = 0 when o # 0
in order that the vacuum be stable. It then follows that

= (Po | Do)
= (®o | UT (00, —00)U (00, —00) | @)
=Y (0| UT (00, —00) [ #4)(¢a | U (o0, —00) | #)
= (®o | UT (00, —00) | B9)(®o | U (o0, —00) | B9)
= (@0 |U(o0 ,—OO) | o),
so that there is some real c-number, say C, not necessarily finite, such that
(@ |U(00, —00) | @9) = €'

This normalization ensures that Sg, is independent of overall c-number
phases. From (4.4.27) we see that adding a c-number C' to V(¢) means that

Ut to) — e’ CEU (¢, 1)

so that U(t,to) is multiplied by an infinite phase e’“7 as T =t — t; — oo.
The same phase factor appears in both numerator and denominator, so that
limy_ o0 Spa(T/2,—T/2) is well-defined. This argument permits us to drop
vacuum-vacuum diagrams such as Figure 4.6(h) from the calculation.

4.8 Bound states

4.8.1 A perturbation expansion

We can circumvent much of the delicate analysis of convergence of QED per-
turbation series by adopting the adiabatic switching approach. We replace the
perturbation V'(¢) (we use Hartree units) by the expression [19]

V.t) =V(t)e t e>0,

and take the limit ¢ — 0 after performing the integrations. We denote the

n-th term of the resulting perturbation series (4.6.15) by ulm (t,t9) whose
contribution is

(@7 8™ |®;) = lim lim

/ dtl/ dtz.../ dt,
T'Soo T—oo 1l

X Py [ T(Ve(tr) Ve(tz) .. Ve(tn))[@i).
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This is easy to evaluate if V,(¢) is an unquantized perturbation in a nonrela-
tivistic framework. From (4.4.18) we have

(@] Ve(t) |q) = ' Er= B =cltl(@y| Hy |,).

so that
(0| SMa)y = —21id(Ey — Eq)(b| Hy | a) (4.8.1)

and

(b 52 a) = (—i)? / ", / "t b Vilt) Vilta) )
- (_i)2 - dt " dt

~ ei(Eb*Ek)tlfdh\ei(Ek*Ea)t2*6|t2\<b | H, |k><k| H, |a>

. b|Hy|k)k|Hy|a
B S{GI LAV AL
k‘ a

(4.8.2)

which is what would have been obtained by simple quantum mechanical per-
turbation theory. More generally, one finds for n > 2

(b]5|a)
— —2mid(Ey — E,)
< 3 (0| Hy | ky)(ky | Hy | ko). .. (kn—1 | Hia)

E1,eeskn_1 (Ey — By, +i€)(Eq — Eg, +i€)...(Ey — Ex,,_, + i€)

4.8.2 Gell-Mann, Low, Sucher energy shift

Atomic and molecular structure calculations start from a zero-order scheme in
which the independent electrons are described by the Furry picture. The state
is modified by coupling to the quantized photon field, and the resulting energy
shift may be calculated using the adiabatic S-matrix formalism [19, 20]. It is
convenient to introduce a coupling parameter A so that

He(X) = Ho + AVe(t), H(XA) = Ho+ AV (1), (4.8.3)

making the n-th term of the perturbation series proportional to A™. Suppose
that the eigenstates and eigenvalues of H,(\) are continuous with respect to
€ in a neighbourhood of ¢ = 0 and of A in a neighbourhood of A = 0 and
that the nondegenerate eigenstate |®g) of Hy with energy Fy evolves into the
eigenstate |P(A)) of H(A) with energy E(X) at t = 0. Clearly

lim E(A) = Ep,  lim [Dc(A)) = |Do).

independent of e. Gell-Mann and Low [19] and Sucher [20] give the energy
shift for a non-degenerate state in the point spectrum as
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1.0
AB() = E(\) — Ep = lim SieA = In (o] S.(A) o), (4.8.4)

where
Se(/\) = Ug(OO, —OO).

To derive (4.8.4), we start with the unnormalized state
[@2(N)) = Ue(0, —00) [@0) (4.8.5)
where the adiabatic U matrix satisfies

i%Ue(tto) = AV.(t)Uc(t, to), Ue(to,to) =1.

Next we note that
(Ho — Eo) |9.(\)) = [Ho, U (0, —00)] [@o). (4.8.6)

From (4.4.27), we can express the commutator in the form
[Ho, Ue(0, —00)] =
—inn 0 0
> ( Z') [HO,/ dt, . / dtpeOTFIT(V (1) .V (t,) |
n! 0

— 00

n

and, because H( generates time displacements in the interaction picture,

we see that

[H07Ue(0a _OO)] = _ZZ (_Z)\)n

n!

0 0
0
e(ti4...4+tn)
lHO,/_OOdtl.../_oo dt, §k G TV () V(8)

The symmetry of the integrand allows us to replace >, /0ty by nd/0t1, and
using

0

o {ee<t1+~--+tn>T(v(t1) e V(tn))}

— ecltitettn) {eT(V(h) V() + %T(V(tl) .. V(tn))}

gives eventually

[Ho, Uc(0, —00)] = {—AV(O) + ie)\aa)\] Ue(0, —00), (4.8.7)
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and inserting this in (4.8.6) gives

(H(/\) — Ey— ie)\;)\) U, (0, —00) |®o) = 0. (4.8.8)

Now define ,
LA Uc(0, —o0) |@o)

|Pc(N) = (@o|DL(N))  (Po|UL(0, —00) | o)

Equation (4.8.8) gives

(F100 = o = x5 ) 19030) = e (A g5 (@0lU0. o) 20) ) 230

provided the limit
(V) = lim [2()

exists and then, provided A9(|@.())))/0A is bounded as € — 0,
(H(A) — Eo)|2(N)) = AE(N)[@(N)),

where

AE()) = liny ie <)\83)\ In(@o|U. (0, —0) |q50>) . (4.8.9)

Thus |@(\)) is an eigenfunction of H(A) with shifted energy Fo + AE(M).
The same calculation with the operator U, (0, +00) gives

Ue(0, +00) |o)

[Dc(N)) = (B0]U(0, +00) |®0)”

(4.8.10)

provided we are dealing with a discrete state. In the continuous spectrum,
U (0, 400) |®) give the in- and out-states, respectively &+, which satisfy dif-
ferent boundary conditions and are quite distinct eigensolutions of the Hamil-
tonian H ().

The symmetrical form (4.8.4) is more convenient for practical calculation
because only straightforward Feynman diagram techniques are needed. Equa-
tions (4.8.8) and (4.8.9) give

P(N)|0U(0, —00) /O |Po)
(De(N)|Ue(0, —00)|@o)

_ lim e (Bo|UZ (0, 400)0U (0, +00) /ON| Do)
=0 (D] — U (0, +00)Uc (0, —00)[@o)

(Po|Uc(+00,0)0U (0, —00) /OA|Pg)

(@o]Ue(00,0)Uc (0, —00)|@0)

AE()) = lim z'e)\<
e—0

= lim e
e—0

Combining this with the similar expression [20]
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o (P0|0U(+00,0) /ONUL(0, —00)|Po)
AEN) = e o0, 0)0.(0, —o0)B0)

gives (4.8.4). The normalization of the Gell-Mann, Low, Sucher formula (4.8.4)
is similar to that of the S-matrix as defined in Section 4.7 so that vacuum
diagrams make no contribution to the energy shift and it is only necessary to
evaluate connected Feynman diagrams. Inserting

S.(\) =1+ i A"S™ (1)

n=1

in (4.8.4), we see that as A — 1, the energy shift becomes

Bo| 300, nS™ @
AE = tim Sie 2ol Znzy Se o)

L : (4.8.11)
=02 (o] 1+ 300, S |d)

where S = limy_,, Se(”)()\). Thus the leading contributions to the pertur-
bation series are

1 2
— lim =4 (1) 2 _ (g
AE = P_I}I(l) 5 i€ <¢’0 Se) + 28, (SE ) (4.8.12)

+356) — 35 g™ 4 (S§1>)3
+4SW — 48 5B 9 (S§2>)2

4 (S§1>)2 S@ (S§1>)4 . ‘ qso> (4.8.13)

to which only connected diagrams contribute.

4.9 Effective interactions

Effective interactions between electrons and positrons appear in second order
of QED perturbation theory from diagrams such as Figure 4.6 (a)—(d) in
which a virtual photon transfers energy from the particle passing through the
space-time point x to a second particle passing through another point y. The
treatment of this section is similar to that of Lindgren [21].

4.9.1 One-photon exchange: Feynman gauge

We start with electron-electron scattering; the corresponding calculations for
electron-positron scattering or positron-positron scattering are very similar.
We first express the electron field operators, (4.2.5) and (4.2.6), as a sum
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(+) (=)
Y(@) = arpe(z) + Y bls(x),
Substituting

V() = ¢r(w)e_iErt7

where F, is the relativistic energy, we can write

(+) (=)
D(x) =Y ar(®)d (@) + Y bl(t)os() (4.9.1)

where a,.(t) = a, exp(—iFE,t). The lowest order diagrams contributing to scat-
tering of one particle by another are Figures 4.6(a)—(d); Feynman’s rules give

. 2
5@ _ <Z@) /d4x2/d4z1 oelta|—eltz]
C

x Dy, (w1 = x9)T (: p(z)y" (1) = P(w2)y" P(x2) 1), (4.9.2)

where we have adopted the Feynman gauge for the photon propagator and
€ > 0 is a small adiabatic parameter. From (4.9.1), the electron part of the
current at the vertex xq is

> agti)ay(t) b, (1) dp(a1),

and we write down a similar expression at the vertex xo. The Feynman gauge
photon propagator (2.9.39) can be written

dz e—iz(t1—t2)+i\z\R/c
iDE (21— 29) = igu | — , 4.9.3
! ’“’(xl 72) ‘I /27r dmegR ( )

where R = |x1 — x3|. We can perform the time integrations using

/ - dty " Pa=Er=2ti=cltil — on A (B, — E,), (4.9.4)
and
/ h dty e\ Fs—Ert2)ta=eltel — 9n A (2 + E, — E,), (4.9.5)
where 1 .
li_I)r(l) A (z) = 21_1% Ty o(x). (4.9.6)

defines the Dirac delta distribution. Because



224 4 Quantum electrodynamics

/ dz Az — Eg+ Ep))A(2+ Es — Ey)

— 00

= Ao (Eq+ Es —E,—E;) (4.9.7)

the sum of the incoming energies I, + E, and the outgoing energies £, + E,
are equal, and we can set z = w = E, — K, = E,. — E; as ¢ — 0, so that

SAF — _ori Z (alap)(ala,)Ase(Ey + Es — E, — E,)
p,q,7,8
ein/c

X /d3372/d3w1 O (1)7°7" bp (1) Gpuv 7 ¢l (@)1 br (22),

which can be put in the form

SOF = 27 Y (alay)(ala,)

p,q,7,8

X Aoe(Ey + Es — Ep, — E;)(qp |l<:M(R; w)|sr), (4.9.8)
where

ein/c )
5 Jsr(@2),,- (4.9.9)

(ap| KV (Bsw)sm) = [ s [ @bl

This definition of the matrix element emphasizes its interpretation as the in-
teraction between two transition charge-current densities. However, tradition
dictates a different expression,

(gs| g™ (R;w) |pr) = (qp |k(R;w)| sr) (4.9.10)
_ / iy / By ¢ (1)61(@2) g (R; w) (@1 )by (2),

where
ein/c

R

is usually known as the Mgller interaction [22]. Here the matrix element has
been written to look like a nonrelativistic interaction of uncoupled initial and
final product wavefunctions, with

g (Rw) = (1 -y - )

(4.9.11)

(V7)1 ()2 = (1 —aq - az)

where the subscripts 1 and 2 label the two vertices of the Feynman diagram
at which the Dirac matrices act. It is unfortunate that this notation obscures
the physical meaning of the effective interaction.

The Mgller interaction is usually regarded as an effective potential function
in accordance with (4.9.10), although the dependence of g™ (R; w) on w makes
it inconsistent with the usual interpretation of the word “potential”. The
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derivation enforces overall energy conservation; this is what we should expect
for two particles in isolation, but we shall encounter cases where this restriction
is lifted in higher orders of perturbation theory. So for the present, we have
only succeeded in defining the Mgller interaction “on the energy shell”: £, +
Es=E,+E,.

The energies involved in light elements are such that wR < 1 over most
of the region of interest. It is therefore often acceptable to set the exponential
in (4.9.11) to unity so that

1

lim g™ (R;w) = (1 — a1 - ag) —

Jim, 0 (4.9.12)

so that (4.9.9) becomes a 1/R interaction between two charge current densi-
ties,

. I
(qp |k(R;0)| sr) = /dBmg/dB:cl jqp(:cl)“ﬁjs,«(mg)“ (4.9.13)

= [@r [ @ {pqp 21) per (@) — T gp() Jsr(m)}.

The first term is the nonrelativistic Coulomb interaction, the second is an
interaction between currents (in R3) which, can be rewritten as the matrix
element, (4.9.10), of the interaction proposed by Gaunt [23]:

a1 - o

9% (R) = ——F

4.9.2 One-photon exchange: Coulomb gauge

In Coulomb gauge, we have to replace the Feynman gauge propagator (4.9.3)
with the expressions of (4.6.5). The part due to the Coulomb interaction alone
can therefore be written in the familiar form

SAC = _orj Z a lay)

p,q,7,8

X Aoe(Eg + Es — Ep, — E;)(qp|1/R| sT) (4.9.14)

where
1
(gp|1/R|sr) = /deQ/del Pap(1) Epsr(:cg). (4.9.15)
A corresponding calculation of the transverse photon interaction part gives

SAT — _on; Z a lay)

p,q,7,8

x Ao (Ey+ Es — E, — E,) (qp|kT (R;w)| sr)  (4.9.16)
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where
(qp |E" (R;w)| s7)
ein/c
:/dsxg/d?’xl (Jqp(w1)~J5T(a:2) 7

ein/c -1
+ (Jgp(®1) - VR)(Jar(2) - VR)WQR) (4.9.17)

with w = |Ey — Ep| = |E, — E;| as in (4.9.8).

The Breit interaction, which, when expanded in powers of 1/c? gives the
Breit-Pauli Hamiltonian [24, Sect. 39] used frequently to approximate rel-
ativistic effects in atomic and molecular physics, is obtained from (4.9.17),
retaining only terms independent of w,

(gp|k" (R /d3$1/d3$2

X (2%3) (Jqp($1) T (@) + (T gp(1) - R) (T () - f{)) . (4.9.18)

where R = R/R, so that the kernel has an error O(wR/c). As in the previous
section, we can express these results in terms of an effective potential g(R;w),
such that

S = 2miAy(E, + Es — E, — E,){qs | g(R;w) | pr), (4.9.19)

qs,pr

where

(aslg(Riw) [pr) = [ @ [ @ 6l@0)6l(@2) ra(Biw) 6010, (22,
so that
g(R;w) = 1/R+ g" (R;w), (4.9.20)
where the transverse photon interaction kernel is

- ein/c sz/c ,—1

In the long wavelength limit, w — 0, this reduces to the Breit interaction
kernel corresponding to (4.9.18),

g% (R) = ilg})g (Ryw) = ~3R <a1 o+ (ay - R)(ay - fl)) . (4.9.22)
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4.9.3 * Off-shell potentials: heuristic argument

The effective potentials have been derived “on the energy shell”, which forces
Wer = —Wgp = w, Where ws, = (Es — Ey)/c and wg, = (Ey — E )/c What are
we to do when we encounter situations off the energy shell when wg, # —wgp?
A simple heuristic argument gives part of the answer. After dropping time-
dependent factors, we can write (4.9.2) in terms of the interaction matrix
element

(gs|g(R)|pr) = /d3 /d3yyqp (=) 35.(y),

where D,,,,(x — y) is the photon propagator in some unspecified gauge. The
4-potential generated by the charge-current density amplitude j% (y) at the
space-time vertex x is

A Jf wb,« = /d yD;,w )j.s’r(y)

where the frequency wg, = (Es — E,.)/c is fixed by energy conservation at the
vertex y. We can therefore interpret the interaction matrix element in terms
of this 4-potential:

(45| g(Riwa) | pr) = / B it () Ay (1 04r).

If we interchange the roles of the two vertices, we get an alternative expression

(as | g(Ricoun) |7 = [ 932 0) Ao,
which suggests that the effective interaction off the energy shell should be
defined by
1
laslg(Rswsr) + g(Biwgp) [ p7) (4.9.23)

Whilst this does not give the complete story, it throws some light on the more
complex argument that follows in §4.10.

4.9.4 One-photon exchange: the first order energy shift

The one-photon exchange interaction contributes a single term to the Gell-
Mann, Low, Sucher energy shift in the form (4.8.12), namely

AE = lim ie S,
e—0
where, from (4.9.8) or (4.9.14),

SP = —2mi Yy (afap)(ala,)Ase(Ey + By — Ey — Ey) (ap | k(B;w) | s7).

p,q,7,8
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Consider a two-electron state

1
|®) = \ﬁ aial |©o),

where @ is the electron vacuum, and write
AE() = lim (| ieS@ | @) (4.9.24)
e—

Because the initial and final states are the same, the matrix elements must be
evaluated on the energy shell so that, by (4.9.6), lim._,0eA.(0) = 1/7, and
we obtain the overlap charge-current form

AE(P) = (aa| k(R;w) | bb) — (ba| k(R;w) | ab).
as in (4.9.9). Alternatively, using the traditional expression (4.9.10), we get

AE(®) = (ab| g(R;w) | ab) — (ba|g(R;w) | ab).

4.10 x Off-shell potentials

The S-matrix approach of the last section is limited to processes that are
diagonal in the interaction from which we can calculate energy shifts and
transition rates for energy-conserving processes. A similar procedure that al-
lows us to calculate matrix elements off the energy shell can be applied to the
evolution operator U (t, —oc0), where we can set ¢ = 0 without loss of gener-
ality. We rework the calculations of the last section replacing the Feynman

T1 €2

Fig. 4.7.

diagram of Figure 4.6(a) with Figure 4.7, which contains additional (double)
lines representing electrons propagating in the external field from x; to x3
and from xo to x4, with 29 = 2 = 0. The amplitude for this process is given
by
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U(z)(O —00) ( ) /d4x4/d4x3/d4x2/d4x1 e~ cltil=eltz]
<0 01 00) (5 Selane)) 8a) 1 (aa) (Sl an))
xiD¥ (21 — x2) x T (: D@y () = P(z)y"d(a) :) . (4.10.1)

For simplicity, we shall start with the Feynman gauge photon propagator
(4.6.3), and express the electron propagator in a spectral expansion as in
(4.6.8),

(o)
dz G(x,y;2) Y0 eizl@=v)’/e. (4.10.2)

—00

1
-9 -

with
or(T
Gl ;2 Z z— E + inye

where 7, is 41 for electron states and -1 for positron (negative energy) states.
It is also convenient to write ¢, = a, when 7, = +1 and ¢, = bI when 7, = —1.
After a trivial integration over x9, the orthonormality of the eigenfunctions
n (4.10.2) gives

1 I g2tz
3. ot _1 _ 1 S T
/d zq P (x4) ( 25';7(1‘4,1:2)) 57 /_OO dzo FoR—— Pl(z2)

with a similar expression for the integration over xzs. Thus (4.10.1) becomes

U (0, —00) = 2i Z : c];cp sele, (4.10.3)

p,q,7,8

X[ 2m/ E — Zg — in)g€ / E — 23 — 11)q€

X Ac(z2 — By — 21) Az — B+ 21) (ap | KM (B |21]) | s7)

where the two A, distributions come from the integrals over ¢; and ¢ty and we
have taken e?/4meg = 1. Before performing the integrations over zp and z3,
we rewrite the product of the z-dependent denominators in the form
1 1
Ey — 29 —inse By — 23 — inge
1 n 1 } 1
Es—zy—inse  Ej—z3—inge| Eq+ Es — 20 — 23 — i(ns + 1g)€

(4.10.4)

and exploit the well-known relation that, as e — 0,

1 1
=P +ind(E —
E — 2 Fie <E—z> imd(E - z),
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where P(...) denotes a Cauchy principal value. Equation (4.10.4) thus breaks
up into a sum of terms
(im)* (s0(Es — 22) + N40(Eq — 23) +1q)6(Eq + Es — 22 — 23)

) (ns
+ i1 (ns0(Es — z2) + n40(E )P (
(

E+E—ZQ—23>

1
i | P P 0(Ey + Es —
ol (o) e o

1 1 1
+ | P +P P .
EszQ quzg Eq+E572’272’3

The calculation is now straightforward but tedious. The first line gives zero if
the outgoing particle states are different, 15 + 1, = 0; when the outgoing par-
ticles are both electrons or both positrons we recover the on-shell amplitude

—2mi Z : cgcp sele t Ags(wep + wsr) (qp | KM (R |wgpl) | s7). (4.10.5)

pqrs

The A factor enforces energy conservation, wqp + wsr = 0. The second line
gives, as suggested by the heuristic argument,

o S sl s ey« Il L)+ (ap [ (R )
i tchep iclen
q 2(Es+E,—E, — E,)

(4.10.6)
when the outgoing particles are both electrons, n, = ns = 1. The third line
gives two terms that cancel, and the fourth line gives two principal value
contributions

Z / ( P P ) (gp | KM (R; ] 2)) | s7)
el aCp : dz —
e IS Z—Ws Z2Hwe) Es+E,—-E. —-E,
(4.10.7)
which are not given by the heuristic argument. It can be transformed into a

form that is more amenable to computation by first expressing each part of
(4.10.7) as an integral on the positive real line:

e P < P P
/ el‘Z‘R/CidZ :/ ezzR/c |: _ :| dz.
s zZ—Ww 0 zZ—Ww z4w

Now consider the contour integral

; P
I:/ Ay
C z— 1

where C' consists of the real axis 0 < z < a, the quarter circle z = ae’®, 0 <
¢ < 7/2, and the imaginary axis from z = iy,a > y > 0. If 2 > 0, it is
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necessary to indent the contour to pass round the pole z = {2, which, in the
limit @ — oo, gives

I —>/ A —— Ly + imf(02)e P E/e,
0 1y — 2

where 6(£2) = +1 if 2 > 0, 6(£2) = 0 otherwise. Collecting terms, we find
that (4.10.7) is equal to

1
—2mi N D P
27”;5 1CyCp it CyCr E;+FE,—E,—E, (4.10.8)

x{—l/omdy< Pre _ 4 e )(qplkM(R;iy)ST)

m ol o,

+im6(wrs)(qp | kM(R§ wrs) | s7) + Z'7""9(‘*)1711)((110 ‘ kM(R§ qu) | s7)

where
EM(Ryw) = B¢ /2R, EM(R;iy) = e vI/¢ /R,

The integral in the square brackets is real. However, the last two terms, which
appear only if E, > E, or E, > E,, are complex. So if p and r label ground
state orbitals, these terms are absent. When they label excited orbitals, there
may be decay channels and the imaginary part is related to the decay rate of
the excited state. These can also be expressed [21] in terms of the sine and
cosine integrals Si(z) and Ci(x) using [25, 3.354 (1)].

For electron-electron or positron-positron interactions, we can take the
low frequency limit in which the kernels all reduce to k¥ (R;0) = 1/R, corre-
sponding to the effective potential (4.9.12) and can be taken outside the sum
of (4.10.5),(4.10.6), and (4.10.8). The result is that

UPF(0, —00) — —2mi Z : c];cp selen: (gp| KM (R;0) | s7)
p,q,7,8
X {AZE(Eqs,pr) (4109)
Mg +1s — g0 (Wrs) — sg0 (Wpg) + im[0(wrs) + O(wpqg)] }
2F ’

qs,pr

+

where Fgq pr = wgp + wsyr. This is not applicable to electron-positron interac-
tions, where the photon energies are at least of order 2mc?.

In the Coulomb gauge, the results are more complicated. We replace
EM(R;|2]) by 1/R + kT (R;| z|). The Coulomb part is trivial. From (4.9.17)
the transverse kernel has two parts
ei\ z|R/c

—5 KR =00,

ei| z|R/c _ 1

k’(l)(R;\ZD = W,

i,j=1,2,3,

where i, 7 denote indices of Cartesian components and z is real. Clearly the
scalar part, k() (R; | z|), gives the same singular and principal value terms as
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the Feynman kernel; the tensor part, k() (R;| z|), as it stands, has a singularity
at z = 0. We can exhibit this as a removable singularity by evaluating the
partial derivatives with respect to the Cartesian components of R, giving

(1D = (8 - 2 ) L - S v,
where
1 —ell=1R/e(1 — 4| z|R/c R?
F(2) = A=ilzR/e) _ B oz, |2 —o.

22 2c2

The principal value integral over z analogous to (4.10.7) can now be handled
in much the same way as before, so that in Coulomb gauge we can replace
EM(R;w) in (4.10.5), (4.10.6), and (4.10.8) with kT (R;w). In the same way,
in the low frequency limit, we can replace (gp |k (R;0)|sr) in (4.10.9) with
the Breit potential (gp|kZ(R)|sr) of (4.9.22).

4.11 Many-body perturbation theory

The effective interactions introduced in the last section enable us to set up a
consistent scheme for studying the properties of many-electron systems mod-
elled on nonrelativistic many-body perturbation theory. This is a widely used
approach that is capable of giving results of high accuracy when relativistic
effects are not relevant, mainly for light atoms and molecules. It is therefore
not surprising that a similar theory based on the effective potentials of the
last section, relativistic many-body perturbation theory (or RMBPT), is also
very effective when relativistic effects cannot be ignored. We shall later discuss
small effects, conveniently described as radiative corrections, whose diagrams
are omitted in RMBPT.

MBPT was first introduced and applied in the theory of nuclear structure,
which has some formal similarities with atomic and molecular structure. There
is one important difference: nucleons experience a strong short range repulsive
force that cannot be treated successfully by ordinary perturbation theory. The
difficulty was overcome by Brueckner, who constructed an effective one-body
potential U based on the two-body interaction g whose residual corrections to
the nuclear energy were small, although the corrections to the wavefunction
were large [26, 27, 28]. Brueckner [29] used this formalism to study nuclear
matter, for which surface effects on the structure could be neglected. This
established that, for a fixed nucleon density, the energy was proportional to
the number of particles; the energy had a minimum at the nucleon density
observed in large nuclei. Brueckner found terms in the perturbation expansion
that were quadratic, rather than linear, in the nucleon number due to the
presence of what he called “reducible” or “unlinked clusters” that could be
expressed as products of energy contributions of lower order. These terms
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are clearly unphysical; Brueckner [30] showed that the perturbation theory
could be recast so that offending terms of the first few orders cancelled but
was unable to demonstrate this in full generality. Goldstone [31], who used a
field theoretic formalism similar to ours, was able to show that the unphysical
terms could always be represented in terms of “unlinked” Feynman diagrams
that had two or more disconnected pieces. We have already encountered this
situation in our discussion of the S-matrix, where such diagrams contribute
only to the phase of the wavefunction but not to the energy of the system.

4.11.1 Nonrelativistic many-body theory

For application to atomic structure, the starting point of the Goldstone pro-
cedure is an unquantized nonrelativistic Hamiltonian for IV orbital electrons,

N
H=>"hi+Y_ g (4.11.1)
=1

i<j
where )
_p_Z0)
2m r

is the Schrodinger Hamiltonian for a single electron subject to the Coulomb
attraction of a fixed nucleus and

1
R’L] ’

9ij = Rij = |Rij|, Rij=m — ;.

describes the Coulomb repulsion of an electrons at position x; by an electron
at position ;. The potential term —Z(r)/r, r = |z|, allows mainly for the
nuclear charge distribution to have a finite “radius” Ry, so that Z(r) — Z
when r > Ry. We discuss commonly used nuclear models in the next chap-
ter. We shall introduce an effective potential u(r), and assume that we can
construct a complete orthogonal set of orbitals spanning the relevant Hilbert

space, .
{;;n B Z7(0T)+U(T)}¢i(r) =&; ¢i(r), (4.11.2)

where 7 orders the states in terms of increasing energy eigenvalue ;.

Goldstone used the Fock space formalism of §4.1.3. We shall do the same,
although we shall here distinguish Fock space operators from their unquan-
tized counterparts with a hat accent. Spectral resolution of the field operators
¢(x) and ¥ (z) allows us to write

P =Y aita; G| f1)) (4.11.3)
ij

for the Fock-space operator of equation (4.1.34) corresponding to the unquan-
tized one-body operator f(r) and
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~ 1 .
G= 3 Zaﬂaﬂalak (i | g | k) (4.11.4)
ijkl

for the Fock space two-body operator of (4.1.35). The sums run over a com-
plete set of indices of the orbital eigenfunctions, which we assume to be nor-
malized as well as orthogonal. We now write

H=Hy+V, (4.11.5)

where

and @ is given by (4.11.4).

Goldstone’s analysis was similar to §4.8.1, the main difference being that
he calculated the perturbed wavefunction ¥ at time ¢ = 0 starting with the
unperturbed nondegenerate wavefunction @, at —oo, and used diagrams in
which the vertices were time-ordered; all time-orderings are implied in a single
Feynman diagram. He found, as in (4.8.8),

. UE(O7 _OO)¢O
¥, = lim
e—0 <¢0 | UE(O, —OO) | §po>

where U, (0, —00) is now often called the wave operator. After carrying out the
time integrations, this gave

1 = 1 ~ 1
¥, = lim — V... — 14 =
=0 T Eo — Hy + nie Eog— Hy +2ite FEg— Hgp+ ie

Vd,
where ), indicates that only linked diagrams are included and a sum over n
from 1 to oo is to be understood. In the nonrelativistic case, where @q is the

state of lowest energy Ej, there can be no zero denominators when taking the
limit € — 0, so that this equation becomes formally

1 A"
W= AV> . (4.11.6)
zL: (Eo — Hy

and the energy shift is

AE = (&, |V |¥) = lim (20| VU(0, —00) | %)

e—0 <¢0 | [JE(O7 —OO) ‘@0>
> (o
>

~ 1 A\ "
Eo — Hy

In the simplest model of an atom, we assume that the zero order ground
state @y is one in which each of the N mnon-degenerate orbitals of lowest

(4.11.7)
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energy given by (4.11.2) accomodate one electron, all higher orbitals being
unoccupied. We can think of this configuration as forming a core, and its
wavefunction will be a Slater determinant. We divide the spectrum of (4.11.2)
into two classes

e Occupied/core orbitals denoted by a,b,c,. ..

e Unoccupied/virtual orbitals denoted by r,s,t,...

o Unspecified orbitals which may belong to either of the above two classes
are denoted by 7,7, k, ...

From (4.1.27) or (4.1.33) we get

| Bp) = al al ...al |0) (4.11.8)

1
\/ﬁ ai az can

so that the zero order energy is given by

N
Eo = ($ | Ho | Po) = ea, (4.11.9)
p=1

and the first-order correction to the energy due to the perturbation Vis
Ey = (& |V | D) = (D0 | — U + G| By) (4.11.10)

where

(0GP0 = 3 3 [(abl gl ab) — {bag|ab)].
ab

The Hartree-Fock effective one-body potential, uy p, is defined for all orbitals
by

(ilunn ) = S [blg156) — (vilg|3)], (411.17)
b
where the sum over b runs over core orbital indices. It follows that to this
order of approximation, there is an effective one-body potential v such that

(i[vlj) =G| —u+unr|j). (4.11.12)
Thus, from (4.11.10),
E,q =Z(a|v|a>:—Z<a|u|a>+%z<a|uHF|a>

If we now identify u(r) with the Hartree- Fock potential uy g, then

E,| = —% Z<a|uHF|a> = —% Z [{(ab|g|ab) — (ba|g|ab)]. (4.11.13)

a ab

With u chosen in this way, then
€o = {a|h+ugr|a),

so that the eigenvalue sum Ej (4.11.9) counts all pair repulsion terms twice;
the effect of Eq, (4.11.13) is therefore to correct for this double counting.
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4.12 MBPT for atoms and molecules

The first person to apply Goldstone’s formalism to atomic physics was
Kelly [32, 33, 34, 35], who initially studied closed-shell atoms such as beryl-
lium as well as atoms with nondegenerate unperturbed reference states. Ex-
tensions of the theory to handle atomic open shells followed; Brandow [36, 37]
used the Brillouin-Wigner expansion, whilst Sandars [38] used the simpler
Rayleigh-Schrédinger scheme. Sandars also exploited the topological similar-
ity of Feynman diagrams to the angular momentum diagrams introduced by
Yutsis et al. [39] to find representations for various effective operators, a tech-
nique that was further developed in [40]. Atoms with several open shells re-
quired an extension of the formalism made independently by Lindgren [41]
and Kvasnicka [42]. This extension is based on a generalized Bloch equation
for the wave operator 2, which generates the perturbed wavefunction ¥ from
the unperturbed wavefunction @, belonging to a multi-reference model space
in much the same way as the U-matrix of (4.8.5). Whilst this was a major ad-
vance, the perturbation series often converges quite slowly. So-called all-order
methods, in which certain classes of diagrams are generated iteratively, and
coupled cluster schemes have become popular in both atomic and molecular
physics as well as in quantum chemistry.

4.12.1 Particle-hole formalism

A prominent feature of the quantization of the electron-positron field in §4.2
was the division of the energy spectrum into two disjoint pieces: the electron
states of positive energy and the positron (or hole) states of negative energy.
With a few modifications, this particle-hole formalism proves to be just as
useful for nonrelativistic MBPT in the Furry picture. The Poincaré invari-
ant, sgn E, no longer has a meaning. Instead of the QED vacuum state &y,
which has no particles or anti-particles, it is more convenient to start from a
nearby reference state ¢ representing a closed-shell, and then to generate an
N-particle state by creating particles and holes with respect to @. The zero-
order independent electron spectrum consists of the core states which are
occupied in @ and particle states, which comprise the rest of the spectrum.?
The particles are associated with creation and destruction operators a;[,aj
whilst the holes, or excitations out of the core, are associated with creation
and destruction operators b}, = a, and b, = al. As in §4.10, it is convenient
to write ¢; = a; if i refers to a particle state and ¢; = a;-r if it refers to a hole
state. A string of creation and destruction operators is in normal order if all
particle-hole destruction operators ¢; stand to the right of the particle-hole
creation operators c:r We shall use curly brackets, {...}, to denote normal
ordering of a string of particle-hole operators.

In this scheme, the operator V of (4.11.5) can be decomposed into three
normally ordered parts

2 There are, of course, no negative energy states in the nonrelativistic theory.
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V="Vo+ {1} + {12},

where 1
Vo=—Z<aIUIa>+§Z[<ab\glab>—<ba|g|ab>]
a ab

is a pure number (or zero-body operator),
(i} =3 {ele;Hilvld)
j
is a one-body operator, and

{Va} == Z{c Teier}ig| g | kl)

zykl

is a two-body operator. Here the indices 4, j, k,! run over the complete spec-
trum, whereas a, b run over core states only. The advantage of this formalism
is that each term can be displayed in the manner of a Goldstone diagram [31]
similar to the Feynman diagrams already encountered, a considerable help in
taking MBPT to higher orders. Notice that {V;} vanishes when u is chosen
to be the Hartree-Fock potential uy r, which is one reason for the popularity
of the Hartree-Fock approximation as a good starting point for more pre-
cise calculations. With this formalism, Wick’s theorem and diagrammatic

(@[ fla) (ib]g|ab) —(bilg|ab)
Fig. 4.8.

techniques can be used in much the same way as in QED perturbation the-
ory. However, the Hamiltonian is time-independent in nonrelativistic quantum
mechanics of atoms and molecules even when relativistic corrections are in-
cluded at the Breit-Pauli level. It is therefore possible to formulate MBPT
in a time-independent manner and it is customary to employ Goldstone dia-
grams, in which time is directed up the page as in Feynman diagrams, particle
lines are directed upwards and hole lines directed downwards. One- and two-
body interactions are instantaneous and appear as horizontal dashed lines
as in Figure 4.8. However, one Feynman diagram incorporates all possible
time-orderings, so the rules for expressing Goldstone diagrams in terms of
contributions to the scattering amplitude are a little different from those for
Feynman diagrams [43, Chapter 1].
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4.12.2 Computational methods

The early calculations by Kelly and others used atomic Hartree-Fock wave-
functions constructed using finite difference numerical methods. The orbitals
are of standard central-field form, in which

¢(x) = const. @ Yim (0, 9).

The integration over the angular variables in matrix element calculation can be
done analytically [40] but the integration over the radial coordinates must be
done numerically. Moreover, the spectral sums in perturbation formulas such
as (4.8.2) involve summing in general over a countable infinity of bound states
as well as an integration over positive energy continuum states. The technical
challenges presented by these numerical procedures limited the accuracy of
the final results.

Quantum chemists have taken a different route to numerical approxima-
tion. Although some attempts have been made at direct numerical solution
of the differential equations for diatomic molecules, the majority of molecular
calculations are based on expansion of the one-electron orbitals in terms of
sets of analytic functions, generally known as basis sets. This replaces the
infinite dimensional spectrum of the differential and integral operators of the
original formulation with finite dimensional matrix approximations. The hope
is that results good enough for practical purposes can be obtained with a rel-
atively small basis set, and that in any case the results will converge if the
basis set is enlarged sufficiently. The evaluation of perturbation expansions
becomes a matter of repeated matrix multiplication, so that the use of finite
dimensional approximations has become cheaper, easier and more attractive
with continual increases in computer speed and memory. Lindgren [43, Chap-
ter 1] and others therefore present the formalism of MBPT in terms of matrix
algebra and Wilson [44] surveys applications to quantum chemistry. Although
both books are now somewhat dated, they continue to give a good idea of the
successes and limitations of such calculations.

4.13 Relativistic approaches to atomic and molecular
structure

4.13.1 The no-virtual-pair approximation (NVPA)

The most direct way to introduce relativistic dynamics into approaches such
as MBPT is to replace the one-electron Schrédinger operator, h, of (4.11.1)
with the corresponding Dirac operator

hp = ca - p+ Bmc* — (4.13.1)

Z(r)
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and the electron-electron Coulomb repulsion operator g with one of the ef-
fective interactions derived from QED in §4.9 and §4.10. However, this is not
quite straightforward, mainly because of the Dirac negative energy spectrum.
The majority of writers on RMBPT, for example Lindgren [43, Chapter 1]
and Johnson [43, Chapter 2], have chosen a different starting point, replacing
(4.11.1) by the so-called no-virtual-pair Hamiltonian (NVP),

N
1
H=A 0> hpit+ Y ( + gB(Rij)> Ay, (4.13.2)
i=1

R,,
i<j *J

where A,y is a formal projection operator on to the positive eigenstates of
hp. This restricts the sums over orbital indices to those that belong to the
positive energy states only. The operator gZ(R) is the instantaneous Breit
operator defined in (4.9.22).

The decision to adopt of the no-virtual-pair approzimation (NVPA) is of-
ten motivated by the natural desire to ignore the positron states that are
expected to contribute little to the physical processes of most interest in
atoms and molecules. In practical calculations with finite matrix schemes,
the positron states double (and, in some approaches, more than double) the
dimension of the basis. The cost of calculations is dominated by the construc-
tion of atomic and molecular two-electron interaction integrals: (pq|g|rs),
where p, q, 7, s label basis functions. If there are M basis functions, then the
work involved scales roughly like M*, so that having to deal with the positron
states might increase the work load dramatically.

4.13.2 The NVPA as an antidote to “continuum dissolution”

The NVP Hamiltonian is also supposed to prevent the alleged destructive role
of “continuum dissolution”, first highlighted by Brown and Ravenhall [45].
Breit [46] originally wrote down the two-electron wave equation that bears
his name

(hg) + hg) + 62/7”12) U(Tl,’l'g) = EU(’I"177‘2)

to study the fine structure levels of helium. He derived relativistic corrections
to the Schrodinger equation for helium as a series expansion in powers of «
that disagreed with the the experimental fine structure splitting. The culprit
appeared to be certain terms of order o arising from g?(R) that could be
associated with “free electron components of negative energy”, which had to
be omitted to resolve the disagreement. The critique of this work by Brown
and Ravenhall [45], supported by a detailed account of the problem in Bethe
and Salpeter [24] and later by Sucher [47]- [51] in a series of articles, has led
to the almost universal adoption of the NVPA Hamiltonian (4.13.2) as the un-
questioned starting point for many developments, in particular in relativistic
molecular structure calculations.
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Brown and Ravenhall’s paper was written when QED was still at a for-
mative stage and reflects a period in which opinion on several issues had still
to crystallize. Their principal criticism was that the time-dependent form of
the Breit equation,

1 e ,
{hm + hpa + R12} (e, T2) =1 %7

nowadays known as the Dirac-Coulomb (DC) model, was “meaningless” as a
wave equation for the two-electron system. Without the Coulomb interaction,
this equation has a stationary ground state that is a product of two 1s Dirac
Coulomb functions. When the Coulomb repulsion term is “turned on slowly”,
the wavefunction evolves into a general sum of products of Dirac Coulomb
functions some of which may be terms with one electron in the negative energy
continuum and the other in the positive energy continuum. Such an expression
would not be square integrable, from which Brown and Ravenhall inferred that
the relativistic DC equation can have no bound state solutions and that the
initial bound state must “dissolve” into the continuum. They concluded [45]
that one could only obtain meaningful results by treating the relativistic parts
using first order perturbation theory to calculate the energy shift from the
nonrelativistic equation and that the DC equation should not be used to
find the change in the wave function. This pessimistic conclusion denies any
possibility of constructing a rigorous relativistic theory of the many-electron
atom or molecule.

Sucher [47]- [51] put this argument even more vividly by claiming that the
Dirac-Coulomb Hamiltonian is “sick”. He suggested that Brown and Raven-
hall’s postulated mechanism of “continuum dissolution” (CD) was mathe-
matically analogous to the physical process of autoionization; consequently
the only way to obtain stable bound state solutions and to restore the un-
quantized DC equation to “health” is to use the NVP Hamiltonian (4.13.2).
The projection operators A are intended to restrict the domain and range
of the Hamiltonian to two-electron “states of positive energy”. The Achilles’
heel of this approach is that there is no way of constructing A, without first
solving the whole problem. Whilst the free particle positive energy projectors
are given explicitly by (3.1.29), no such simple expression can be found in
the presence of interactions. It is generally accepted that Furry picture QED,
in which the Pauli exclusion principle is an integral part of the formalism, is
the appropriate way to describe a system of interacting particles in atoms,
molecules or solids; see, for example the formulation of Sapirstein [52, §IITF].
The electron field operator in Furry QED is expanded in terms of a set of one-
electron spinors, say {|a(U)) }, generated by solving the Dirac equation for
some mean-field potential U. This is assumed to form a complete orthonormal
set in some underlying Hilbert space H. The basis vectors generated by one
such potential, U, will be related to those generated by another potential, U’,
by a unitary transformation:
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la(U)) =) [/ (U")). (' (U") | a(U))
a/

where, in general, the sum over states will run over the whole spectrum, in-
cluding both positive and negative energy solutions. Since we cannot solve
many-particle problems in an exact analytical form, we have to use an iter-
ative scheme in which the interaction between particles depends on the trial
solution at each step. Even if our initial trial solution includes only products
of positive energy spinors, the next iteration changes the effective potential
and introduces negative energy elements. One cannot define Ay, a priori,
as the only way to construct it uses the unknown positive energy orbitals. If
these orbitals are constructable in some other way, then the projectors are not
needed. Conversely, there is no way to construct the orbitals if the projectors
are needed.

Rossky and Karplus [53] applied perturbation theory to a simple one-
electron model, in which the nuclear charge of a hydrogenic ion is perturbed,
Z — Z + z. This problem has an analytic solution which serves to benchmark
the perturbation theory results. In the nonrelativistic case, the energy of the
perturbed Schréodinger ground state is

c15(Z+2) = —(Z+2)?)2=-2%/2 — 27 — 2*/2. (4.13.3)

A perturbation expansion of the energy in powers of z should give the exact
result to second order, but terms of higher order contain diagrams that should
sum to zero, order by order. Rossky and Karplus were able to demonstrate
this cancellation at order z® and higher although their method for dealing
with integration over the continuous spectrum was rather inaccurate. Better
results can be obtained by using a finite matrix approximation [54] which
replaces the continuum integrations by finite sums over (pseudo)-states.

When this method is applied to the relativistic hydrogenic problem, the
results are even more instructive. One difference from the nonrelativistic prob-
lem is that the power series expansion of the analytic expression, (3.3.7), for
the perturbed ground state eigenvalue,

e15(Z + 2) = e15(2) + 261(2) + 2262(2) + ..., (4.13.4)
does not terminate [55]. The coefficients, d(Z), can be split into two parts:
6k(2) =6(Z) + 0, (Z).

(5;(Z ) includes only the positive energy intermediate states that would have
appeared in the nonrelativistic calculation and §, (Z) includes all other terms
of order k involving contributions from negative energy intermediate states.
This reproduces the numerical values of the coeffficients from the analytic
formula, (3.3.7), order by order only if the 6, (Z) contributions are included.
Unsurprisingly 5; (Z) grows relatively slowly from a nearly nonrelativistic
value -0.504 at Z = 10 to -1.61 at Z = 100, whilst §; (Z) grows like Z3 from



242 4 Quantum electrodynamics

+10~* at Z = 10 to +0.047 at Z = 100 [56, Table VL.]. As indicated earlier in
this discussion, the perturbed ground state includes non-negligible negative
energy components whose relative importance grows rapidly as Z increases.

Brown and Ravenhall believed that (4.13.2) was a “valid” relativistic two-
electron wave equation. They gave orders of magnitude estimates for terms
with negative energy components, and for their contributions in first order
perturbation theory [24, §38], [45]. Their derivation of g®(R) from QED is
essentially the same as §4.9 and §4.10; their conclusion that ¢”(R) should
only be used in first order perturbation theory to predict fine structure split-
tings highlights the inconsistency of using an interaction which assumes that
the exchanged virtual photon has low frequency to compute electron-positron
interactions which involve energies of order 2mc?.

4.13.3 The NVPA and “variational collapse”

Sucher [57, pp. 1-54] also advocated the use of (4.13.2) as the starting point
for DHF calculations, in the belief that positive energy projection operators
would also eliminate “variational collapse”. Belief in the existence of “varia-
tional collapse” [58] or “finite basis set disease” [59] became widespread when
early attempts to use finite matrix methods to solve the Dirac problem for
the hydrogen atom in spherical coordinates gave highly inaccurate results; for
example [58, 60]. Spurious low energy “intruder” states appeared, especially
for orbitals with x > 0, along with the expected solutions resembling physical
low-lying states. The results were sensitive to basis set size and, unlike the non-
relativistic schemes on which the calculations were modelled, there was little
sign of convergence with systematic enlargement of the basis set [60, 61, 62].
The lack of a global lower bound to the one-electron Dirac spectrum for atomic
mean field potentials was naturally blamed for this, because the existence of
a finite lower bound to the spectrum is conventionally used to deduce the
existence of a lowest eigenvalue in variational methods. It is only recently [63]
that a variational theory for Dirac Hamiltonians has been formulated, Chap-
ter 5, in which the bound spectrum has a rigorous lower bound. “Variational
collapse” appears in calculations in which the four components of the trial
spinors are allowed to vary independently; the bound derived in [63] requires
the use of spinor basis sets in which the components are related in a particular
way. The components of unconstrained 4-spinors usually fail to reproduce the
correct analytic behaviour close to the nuclei and the variational procedure
has no way to correct this.

Whilst the use of variational methods for the one-electron Dirac problem
is now on a sound footing, there is still controversy over the many-electron
self-consistent field problem. The SCF equations are customarily derived vari-
ationally and, in practice, the problems encountered in solving them are much
the same as in the nonrelativistic case. The solution of the SCF equations
for orbital spinors is subject to the same constraints as the single parti-
cle equations. A perturbation analysis about the converged solution of the



4.14 A strategy for atomic and molecular calculations 243

SCF equations shows that the most important perturbations arising from the
electron-electron interaction involve matrix elements linking the unperturbed
state to low-lying excited orbitals associated with small energy denominators.
Whilst the corresponding negative energy contributions are always present,
their large energy denominators ensure that their effect is relatively small. In
fact “variational collapse” never happens when the wavefunction is properly
constructed.

4.13.4 Semirelativistic approaches

The perceived difficulty of making reliable calculations with Dirac wave-
functions led quantum chemists to fall back on more approximate schemes,
reviewed briefly in §1.5.2. The Dirac Hamiltonian was replaced by quasi-
relativistic Hamiltonians [64] such as the Breit-Pauli Hamiltonian [24, §39],
often derived by a sequence of Foldy-Wouthuysen transformations [65]. Usu-
ally only terms of order (aZ)? are presented, but it is easy enough to continue
formally to write down terms of higher order as in §3.7.2. The additional terms
introduce operators of order (p?/c?)",n > 3, which have infinite expectation
values on the Hilbert space of nonrelativistic hydrogenic wavefunctions, mak-
ing this approach effectively unusable. Whilst the Breit-Pauli method gives
good results for light elements to order (aZ)? , its accuracy degrades in the
third and lower rows of the Periodic Table. The 2-component effective Hamil-
tonian of Douglas and Kroll [66], modified by Hess [67], avoids introducing
divergent operators into the expansion and has therefore become very pop-
ular. Similar ideas underly the regular Hamiltonian approach of Chang et
al. [68] and the Amsterdam group [69, 70] whose ZORA (zero order regular
approximation) Hamiltonian has been well used.

Relativistic effective core potentials (RECP) or pseudo-potentials (PP)
have also been used to approximate the treatment of electron-electron inter-
actions in atomic and molecular calculations. These relatively cheap models,
briefly summarized in §1.5.2, exploit the idea that chemical properties are
largely determined by the properties of atomic valence orbitals and their over-
laps with valence orbitals on neighbouring atoms in a molecule. Calculations
involving only valence electrons moving in a relativistic effective core potential
are relatively cheap. The RECP are parametrized by benchmarking against
atomic DHF calculations, although there is no way to assess the errors in
subsequent applications. Nevertheless, much chemical information has been
accumulated using these approximate schemes, which are currently the most
popular amongst chemists.

4.14 A strategy for atomic and molecular calculations

Relativistic atomic structure literature comes in different flavours, depending
on whether the focus is atoms with not more than two or three electrons
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or on general many-electron atoms. In hydrogen and helium, the focus is
on experimental and theoretical advances in precision physics [71]. There is
wide interest in experiments for determination of fundamental constants using
simple atoms; precise tests of QED; search for violation of fundamental sym-
metries and for variation of fundamental constants; and the construction of
new frequency standards. The required theoretical support therefore focuses
on the calculation of QED corrections of increasing complexity.

Sapirstein [52] gives an excellent review of the extensive work on highly-
charged ions and the relation between QED perturbation theory and RMBPT.
There have been a limited number of studies of the effect of including negative
energy states in the second order of RMBPT [72] for the ground states of
helium-like systems and Sapirstein, Cheng and Chen [73] studied low-lying
states of helium-like ions going up to third order in RMBPT. The former
showed that the negative energy state energy contributions to the second
order pair correlation energy in the ground state grow like Z4 and reach barely
detectable values only for Z > 80. The more recent and comprehensive study
of Sapirstein et al. showed that the results depended slightly on the choice of
potential used to define the orbital set — bare Coulomb, core-Hartree, Kohn-
Sham density functional or modified core-Hartree — and that this could be
more or less eliminated by including negative energy state contributions within
a standard QED S-matrix scheme, corroborating the discussion of §4.13.

Most calculations for many-electron atoms and molecules start from the
effective Coulomb gauge Hamiltonian

N
H:ZhDH—Z(}; +gB(Rz-j)> (4.14.1)

i<j

where gB(R) (4.9.22) is the instantaneous Breit interaction. If we ignore all
coupling to the negative energy states, we have the full machinery of nonrela-
tivistic MBPT, and the corresponding Goldstone diagram technology, at our
disposal in RMBPT. Negative energy state corrections are mostly relatively
straightforward to compute, apart from self-energy and vacuum polarization
diagrams. There are two such one-photon exchange contributions in second or-
der of QED perturbation theory that give energy shifts of similar order to the
Breit correction. The electron self-energy diagram is given by Figure 4.6(f)
and the vacuum polarization energy diagram by Figure 4.6(h). Corrections
due to replacement of the Breit interaction by the more exact w-dependent
transverse photon interaction g7 (R;w), (4.9.21), can usually be ignored except
for X-ray and inner-shell processes in heavy atoms or molecules.

The most popular approximations within this scheme have been of the
self-consistent field (SCF) type such as the Dirac-Hartree-Fock model (DHF).
The Dirac-Hartree-Fock-Breit model (DHFB) is based on the full effective
Hamiltonian (4.14.1). The contribution of gZ(R;;) is quite small, and the
large number of Breit interaction integrals for open shell systems has served
ot inhibit their inclusion. This is not such a problem for closed shell systems,
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where the number of additional interaction terms is relatively small. The ma-
jority of calculations have treated the Breit or transverse interactions using
first-order perturbation theory; it has been shown that the perturbed energies
agree well with DHFB energies in the small number of cases in which compar-
isons have been made. However, the wavefunction in perturbation calculations
is not corrected for the Breit interaction, and this will have to be taken into
account in higher order correlation calculations.

Electron correlation is often more important than higher order relativistic
effects for physical applications. A study of electron correlation in the alkali
atoms [52] used a finite orbital basis set needed generated with the uppgp
one-body potential. The number of diagrams in the perturbation expansion
increases rapidly as the order of perturbation increases and the cost escalates
accordingly. Coupled cluster theory [74, 75], in which certain infinite classes
of diagrams are summed completely, can be very effective. An overview of the
theory as applied to (nonrelativistic) molecular calculations including several
of its variants has been given by Paldus [76].

The CI method and the related technique of multi-configurational SCF
(MCSCF) calculations are conceptually simpler. Here the idea is, as before,
to start from a finite set of orbitals in some one-body potential. From these
orbitals, one can construct a set of N-electron Slater determinants accord-
ing to some scheme for generating 1-, 2- and many-particle excitations out of
some reference set of determinantal wavefunctions. Diagonalizing the Hamil-
tonian in this N-particle basis gives a set of approximate wavefunctions and
energy levels for comparison with experiment. The MCSCF technique requires
also adjustment of the potential and the orbitals that it generates to make
the whole system self-consistent. The implementation of this approach for
molecules has been described, for example, by [77, Werner, pp. 1-62; Shep-
ard, pp. 63-200]. In atoms, there have as yet been few calculations using finite
matrix CI or MCSCF techniques. Fischer and colleagues [78] use finite dif-
ference solution of the coupled orbital equations to solve MCHF problems.
Similar numerical techniques were used by Desclaux [79] to set up MCDHF
calculations, and also by Grant et al. [80, 81, 82] in various versions of the
GRASP package, which can be used either for relativistic atomic CI calcula-
tions or for MCDHF calculations. Radiative corrections for the lowest order
electron self-energy and for vacuum polarization can also be included approxi-
mately. Relativistic molecular codes, for example DIRAC [83], MOLFDIR [84]
and BERTHA [85, 86, 87, 88] are being developed actively.

4.15 Density functional theories

Although density functional theory (DFT) has been a vital tool in the study
of condensed matter for many years, its extensive application to other fields
such as quantum chemistry is more recent. The need for a relativistic extension
of DFT (RDFT) to study systems containing heavy elements was recognized
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some 30 years ago [89, 90, 91] providing the basis for major progress in the
last decade. The development of RDFT, as with other methods examined in
this book, has been based on QED, and this section aims at a brief summary
of its achievements. There is an extensive literature: Dreizler and Gross’s
monograph on DFT [92] includes a chapter on RDFT, and other expositions
will be found in, for example [93, 94, 95, 96].

4.15.1 Basic ideas of RDFT

Relativistic density functional theory (RDFT), §4.15, is based on a general-
ization [92] of the Hohenberg-Kohn Theorem [98] in which the ground state
energy is represented as a universal functional of the electron density. Whereas
nonrelativistic DFT is based on the idea that all physical quantities pertain-
ing to the ground state of a many-body system can be expressed as a unique
functional of the particle density, RDFT requires the relativistic four-current,
j* = (¢p, 7). The starting point is the usual QED Lagrangian density, (4.4.1),
augmented by a time-independent external field interaction

1.
Leact = —E]‘M(JJ)UH($).

The requirement that the theory be locally gauge invariant ensures that
the electron current, and therefore total charge, is conserved. An energy-
momentum tensor, (2.7.10) can be defined that satisfies a conservation equa-
tion

0, T (x) = %jf,(x) v (x), = 0,T"(z) = 0. (4.15.1)

when v*(z) is time-independent. Hence
60/d3x T°%(z) =0, (4.15.2)

so that energy is conserved in the rest frame of the sources. Hence there exists
a QED Hamiltonian operator H

H=H.+ H,+ Hint + Hept, (4.15.3)

where

H.(2°) = %/d% [Wi(2), (ca-p+ fme) ()], (4.15.4)
is the energy of the noninteracting electron-positron field,

H,(2%) = %eo/de(E(:v) -E(x) + *B(x) - B(z)) (4.15.5)

is the energy of the radiation field, and
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Hint(2%) = %/dng“(m)Au(x), Hept(20) = %/d?’xj"(x)vu(x), (4.15.6)

are the interaction energy of the electron-positron field with the photons and
the external potential respectively. The four-potential A, (z) generates the
electric field E(x) and the magnetic field B(x).

The expectation values of H and j#(x) diverge unless measures are taken
to modify the model. For noninteracting electrons, the energy zero must be
redefined to eliminate the contribution of the negative continuum to the vac-
uum state. The external field can create virtual electron-positron pairs, and
this makes it necessary to renormalize the current j#(z). When we permit
interaction with the photon field, the resulting perturbation theory gener-
ates classes of divergent terms that must be renormalized according to the
standard procedures of QED.

Suppose that the ground state @ of the system is in the Fock space sector
with charge ) = —Ne and is also nondegenerate. Then the renormalized total
electron binding energy Er is the difference between the energy of @ and of
the vacuum state @ = 0, so that

Ep = Euor = (@ H| ) — (0| H|0) + AEy, (4.15.7)
J(@) = (@] #(2) | B) + Aj¥(a), (4.15.8)

where AFy,; and Aj#(x) are renormalization counter-terms. The need for
renormalization shows up in RDFT in the basic existence theorem, below, in
the single-particle equations, as well as in the design of exchange-correlation
functionals [92]-[96].

4.15.2 The relativistic Hohenberg-Kohn theorem
The relativistic Hohenberg-Kohn theorem (RHK) [97, p. 539] can be written
{®|® from A, + 90,4} <= {j"(z) implies & = P[j]} (4.15.9)

where A, is the four-potential of the photon field and A is an arbitrary gauge
potential. This statement asserts that the ground state is a unique func-
tional, @[j], of the four-current j* once the gauge has been fixed. The lengthy
proof [97], which relies on a perturbation expansion with respect to both the
electron-electron interaction and the external potential, requires renormaliza-
tion, order by order, to extract the required counter-terms. It implies that
all ground state observables, in particular the total energy E}.:[j], are unique
functionals of the ground state four-current. In principle this energy func-
tional accounts for the relativistic motion of the electrons and photons with
which they interact and also all radiative corrections. The RDFT equations
of motion are obtained from the equation

53% {Etot [j] — )\/d3x p(m)}j_jo =0, (4.15.10)
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where A is a Lagrange multiplier to incorporate a subsidiary condition express-
ing charge conservation and jg is the ground state four-current consistent with
a four-potential A[jg] and, if present, an external field.

If there is no external magnetic field By (4.15.9) simplifies [91] so that al
ground state quantities can be defined in terms of the charge density p = j°/c:

{Vext |Vewt + const. } <= {P|P from v, + const. } <= p(x).

Thus we can now write Fy.[p] rather than Ein.[j], and we can regard the
electron current density itself as a functional of p. The system may still have
a magnetic moment. MacDonald and Vosko [91] have also developed a gener-
alization of RDFT [91] to accomodate spin-polarized ground states.

4.15.3 The relativistic Kohn-Sham equations

The Kohn-Sham approach expresses the elementary variables of RDFT in
terms of a set of auxiliary set of four spinors 1, (x). Although the representa-
tion can describe all vacuum corrections to the ground state four-current and
energy [93], they are usually irrelevant in practice. The four-current in the
NVP approximation can be written in terms of the auxiliary spinors as [96]

(@) = —ec S Ot (@) v Y (x) (4.15.11)
k
where @}, projects onto occupied electron states:

1 for —2mc? < e, < ep,
O = .
0 otherwise,

after shifting the energy zero to coincide with the nonrelativistic definition.
The energy expression may be partitioned so that

Eiot =Ts + Eg + Fegt + Fa, (4.15.12)

where the first three terms have a simple representation in terms of the aux-
iliary spinor set and the last contains all the many-body effects. The free-
particle Dirac Hamiltonian contributes

T, = /d3xz @kz/},t(a:) (ca-p+ (8 —1)mc?) v (x). (4.15.13)
k

The term
Ey = ES + EY (4.15.14)

is gauge-dependent, and in the long wavelength (Breit) approximation is given
by (4.9.13), from which
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o1 pl@)o(a)
ECI1 =2 [ g3 /d3 1 P\ )P )
il 2/ T e
. 1 : I(z) -3 (=)
ELljl=—-—=— [ & gl =L
ul] 2c2 x/ ac | — /|
The interaction with the external field is given by (4.15.6), and E,. is the sum
of the exchange counterpart, F, of the Hartree energy Fy and a correlation
term F, which accounts for all the many-body effects.
Requiring that the expression E;,; be stationary with respect to the spinors
Y (x) leads to the (time-independent) relativistic Kohn-Sham equations [90,
91]
(ca-p+ Bmc® + ot a,,(x)) Vi (x) = Ep vp(x), (4.15.15)

in which a# = %9# and the local four-potential as ,(x) is
as;#(“’.) = ’U#(ZB) + UH,M(w) + ’Uwc,p,(w)

with

_ L[ JM (&) _ O0E.lj]
vEu(x) = P /d T m, Vgeu(X) = ¢ 55 (r) (4.15.16)

These equations must be solved self-consistently in the same manner as the
Dirac-Hartree-Fock equations. It is apparent that this system of equations has
much in common with the DHFB equations studied in Chapters 7 and 9. Only
the occupied orbitals are needed to define the electromagnetic fields which
bind the electrons, and the local four-potential as ,(x) implicitly couples the
spinors ¥ (x). There is no explicit mention of virtual orbitals, and they play
a purely passive role in the self-consistent solution of the Dirac-Kohn-Sham
equations (4.15.15). Nevertheless, they are inevitably present in finite matrix
approximations and can be used to go beyond the NVP approximation if
desired.

4.15.4 Exchange and correlation functionals
The catch-all expression E,.[j] can be divided into two parts,
Egclj] = Eq[j] + Eclj],

where E.[j] is the exchange counterpart of the Hartree energy Eglj]|, and
E.[j] contains all the many-body correlation effects. In the long wavelength
approximation

E, = 7% ZQkQZ /d3x/d3z’ pri(@) pi (') — Jp(x) 'J'lk(ﬂ’f")/CQ'
k,l

|z — |

(4.15.17)
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The unphysical self-interaction terms with [ = k cancel corresponding terms
in Ey, one of the most important sources of error in DFT. Whilst the gener-
alized Hohenberg-Kohn theorem asserts that E,, like the other contributions
to the energy, can be expressed as a functional of j, or of the density p, it
does not explain how to construct it. The traditional response, going back to
the development of Thomas-Fermi theory [99, 100], has been to approximate
(4.15.17) by a local density approximation (LDA), using an explicit function
of p based on the theory of a homogeneous electron gas (HEG). This has the
virtue of simplicity, but has several failings, in particular an inability to cancel
the self-interaction terms exactly.

The simplest LDA adopts the expression for the energy density of a non-
relativistic HEG:

ELPA] = / APz N FHEC ()] (4.15.18)
where

NRHEG 33\ 4/3

€ [o()] = —7 (W> [p(z)]*/3. (4.15.19)
The effective potential v,.(x) is the functional derivative

0Ey.  OeNEHEG| ()] 3\* s
= = =—(= : 4.15.2
o) = 252 - 5) lote) (115.20)

A model of this sort was first suggested by Slater [101], whose expression is
larger by a factor 3/2, and hence the nonrelativistic Kohn-Sham equations in
which the exchange potential is identified by (4.15.20) are often referred to
as the Hartree-Slater SCF model. The Xa model prefaces v, () with an ad-
justable parameter o which can be varied to make some theoretical observable
agree with its measured value.

Attempts to improve on this recognize that the electron motions should
be treated relativistically and that the electron distribution in an atom or
molecule is by no means homogeneous. The energy density in a relativistic
HEG is given by [102]

RHEG ()] — (NRHEG[,)1 B (5) (4.15.21)

)

where

The relativistic correction factor

3 (n simh !B\’
4%,0(5)—1—2(5—52) )

where 1 = /1 + 2, can be split into corrections arising from the Coulomb
interaction
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5 1 2n . . _ 2174
L 1
Py o(B) = 352 + 33 sinh™" g — 35 Inn (4.15.22)
1/in sinh™' 8 ?
2\p (2
and a transverse contribution
1 1
L (B) = = — =5 — == sinh~ C 4.15.23
:E,O(ﬁ) 6 3[32 365 ﬁ+ 3ﬂ4 nn ( )
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This is still not enough; the four-current density of electrons in an atom or
molecule is not homogeneous, so that the LDA can only be a first approxima-
tion. The relativistic generalized gradient approximations (RGGA) attempts
to correct for this by adding terms dependent on Vp(x) so that, following the
nonrelativistic GGA due to Becke [103] and Perdew et al. [104] the relativistic
local exchange energy density can be written [105, 106]

B ()] = N IPC (@) [B00(B) +9(€) Poa(B)]  (415.24)

[ v T
<= {2(%20)1/%]

and the function g(§) is the nonrelativistic GGA correction. This function is
already quite complicated and although it is, in principle, possible to calcu-
late @, 2(5) from the first order response function of RHEG, a simpler semi-
empirical expression has been used in practice. More details may be found
in [96].

The construction of a local correlation potential on similar lines is more
problematic. It seems that adding an LDA or GGA approximation of the
correlation energy to E, gives no consistent improvement over an exchange-
only scheme [95, 107]. It has been suggested [108, 109] that a more promis-
ing scheme would apply perturbation theory starting from the auxiliary KS
Hamiltonian. A relativistic version has been formulated by Engel et al. [96],
which is potentially capable of including all transverse and vacuum correc-
tions. The lowest order term in this scheme using the NVP approximation
is [96, Equation (4.51)]

where

where

pMP2 _ Z@ o, (2 |9l kD[(Ki| 9| 1) — (kjlg|li)]

€ €; — € — €
1]kl z+] k l

0; |1 3. .. .
ZGi_Gl E/d x]mx)”“(xH;@j(w lg1351)

il

AHF
Ec



252 4 Quantum electrodynamics

in which ¢, j are occupied orbitals and k,[ are virtual states with e, € > €p.
The contribution of the transverse interaction is neglected in [96, Equation
(4.51)]. The contribution EMF? is second order in the electron-electron in-
teraction g (or fourth order in QED). The contribution EATF reflects the
difference between the exchange-only ROPM and DHF ground state energies.
The extra computational labour needed for E£2) has limited application of
this scheme to correlation energies in the helium isoelectronic sequence. The
quality of the results is somewhat mixed, and there is evidence that higher
order terms are needed for some applications. A proper discussion would take
us too far afield; see [96] for more details.

4.15.5 The optimized potential method

A recent development [94] rests on the idea that if the relativistic KS spinors
are unique functionals of j# then the functional derivatives of E,. with re-
spect to j* can be replaced in the evaluation of the local exchange-correlation
potential v#. by functional derivatives with respect to the spinors . This
potential is the solution of an integral equation

/ B\ (@, @) Ve (@) = AV (@), (4.15.25)
where in the NVP approximation,
uv AN 9 — ,uG / v /
Xo (iL’,w)——Z Kk Yr(@) Y Gr(e, x') v i (x') + cc.p,
E
which features the KS static response function

—t,
Gk(:c,a:’) — Z q/}l(ml) 7/11 (m )’

€ — €
12k k

and
Al (z) = — & ’{T b G(a ) 2P 4 e }
(x) ;/ ' <Y (x) v Gi(x m)&/)k(m’) c.c

=+ Z Jkk (.’I}) 66k
k

The numerical evaluation of (4.15.25) is relatively complicated, but results
for exchange-only ROPM calculations for the ground states of closed shell
atoms agree well with DHF results [96, Table 4.1]. Results have also been
obtained including transverse photon contributions perturbatively at the Breit
and full retardation levels. The conclusions on the magnitude of retardation
and relativistic effects are similar to those from DHF and DHFB calculations
presented in Chapters 7 and 9.
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Part 111

Computational atomic and molecular structure



5

Analysis and approximation of Dirac
Hamiltonians

Computational problems in atomic and molecular structure and processes re-
quire understanding of the mathematics of Dirac operators and of methods for
constructing numerical solutions of the Dirac equation. Whilst simple prob-
lems such as the structure of hydrogenic atoms can be solved analytically, the
majority of applications to many-electron systems can only be solved approx-
imately. Some progress can be made using methods of functional analysis and
symmetry properties, but the interpretation of experiments often needs high-
precision numerical predictions. Meeting these demands requires cost-effective
and reliable algorithms for constructing solutions of the Dirac equation.

Sections 5.1 to 5.3 present analytical properties of Dirac and Schrédinger
operators, using the definitions and properties of linear operators on Hilbert
spaces of Appendix B.1, on which the numerical analysis of the algorithms
of Sections 5.5 to 5.12 used in relativistic electronic structure codes depend.
Quantum mechanics relies on Hamiltonian self-adjointness; §5.1 examines the
functional analysis of Schrodinger and Dirac Hamiltonians for free-particles
and §5.2 considers the effect of adding a one-body potential. Limitations of
the functional analysis approach for the Dirac operator are avoided in §5.3,
which emphasizes the critical role of spinor boundary conditions in the study
of the radial Dirac differential operator. The boundary conditions also play
an important part in the analysis, Appendix B.7, of the convergence of eigen-
function expansions in two-point boundary value problems involving the radial
Dirac differential operator.

Numerical methods for solving Dirac equations of atomic and molecu-
lar physics are of three types. Rayleigh-Ritz methods, whose theory is pre-
sented in §5.5 and §5.6, require the expansion of radial 2-spinor components
in terms of “kinetically matched” pairs of analytic functions; popular choices
are presented in §5.8 to §5.10. Finite difference methods are the most popu-
lar choice for solving atomic problems, §5.11. Iterative procedures are needed
to construct eigenvalues and eigensolutions for bound states. Finite element
methods, §5.12, have become popular more recently as an alternative to finite
differences, but some technical problems with applications to Dirac opera-
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tors remain. Finite element Rayleigh-Ritz methods lead to equations having
some similarity to those occurring with basis sets, although there are some
similarities with finite difference equations.

5.1 Self-adjointness of free particle Hamiltonians

5.1.1 Free particles: the Schrédinger case

The self-adjointness properties of the Schrodinger and Dirac operators for
free particles can be discussed most conveniently in terms of the properties
of Fourier transformations. According to the Fourier-Plancherel theorem [1,
Chapter 3], each square-integrable function u(x) € L?(E) has a Fourier trans-
form (k) € L?(F)

u = (27)~"/? e~ H* Ty (2)d" z 1.

(k) = (2n) [E (w)d"z, (5.1.1)

u(z) = (2m) /2 [ e~ Frq(k)d" k, (5.1.2)
E

where E and E are both copies of R™ so that

k-x=> kjx;,VeeE, kek.

Jj=1

It is convenient to think of H = L2(E) and H = L2(E) as different spaces
and the map v — u = Uu as defining a unitary operator U on H into H.

The free-particle Schrodinger operator on R”™ is proportional to the Lapla-
cian 92 o2

A= 922 +"'+8x%'

There are several ways in which we can define A as an operator on H =
L?(E). A function ¢ € H must be rather smooth for the expression A¢ to
have a meaning. Suppose we first make the assumption that ¢ is a smooth
function with compact support in R™: that is to say ¢ vanishes outside a
compact subset of R™ that may depend on ¢. In particular, we can think of
the set C§° that contains all infinitely differentiable functions with compact
support. The operator T' = — A with domain Cg° is called the minimal operator
constructed from the formal Laplacian —A. In physical applications, we only
need functions that have partial derivatives up to the second order, which
contains C§° as a subset. The term minimal recognizes this restriction of
the domain. Now the Fourier transform U(T'¢)(k) = |k|2p(k) where |k|? =
kf+4...+ k2. Let K2 be the mazimal operator for multiplication by |k|? on ’;Q,
that is to say, the operator with the largest domain such that |k|2¢(k) € 7.
Then K? is self-adjoint, and its transform
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1 —1 72
= UK (5.1.3)

is a self-adjoint operator on H into itself with domain D(Hy) = U~'D(K?).
Clearly D(Hp) D C§° so that Hy is a self-adjoint extension of 17'. It can be
shown [2, p. 300] that 1 T has Hj as its closure: thus, in the language of §B.1.1,
T is essentially self—adpmt and D(T) = C§° is a core for Hy.

5.1.2 Free particles: the Dirac case

The construction of self-adjoint domains for the free-particle Dirac operator
follows a similar path. Let

F=ca-p+mc’3 (5.1.4)

where a, 3 are the usual 4 x 4 Dirac matrices. This formal differential op-
erator acts on 4-spinors constructed from complex-valued functions on R3.
The underlying Hilbert space is therefore H = [L?(R®)]*, consisting of all
4-component objects

"
u(r) = (r) (5.1.5)
(r)

with the inner product

where
u(r)fo(r) = Zug‘(r)*vj("‘),

and with the norm ||u||*> = (u,u). We define a minimal operator F with domain
D(F) = [C5°(R3)]* by requiring that Fu = Fu for all 4-spinors u € D(F).
As in the Schrodinger case, the Fourier transform, applied component-wise
to u(r ), induces a unitary map U on H into # such that u — Uu. When
u € D(F), the Fourier transform of v = Fu is given by

Kii(k) = o(k) = [co - k +mcB] a(k), (5.1.6)

so that the operator K is defined in terms of matrix multiplication of each
4-spinor (k) by the 4 x 4 matrix [ca- k +mc?]. As in the Schrédinger case,
K is a self-adjoint operator, and its inverse Fourier representation

Hy=U'KU (5.1.7)

is a self-adjoint operator on H with domain D(Hy) = U~'D(K). Making use
of the anticommutation properties of the Dirac matrices, we see that
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[ca - k 4+ mc?B)? = AP|k|* + m?c?

so that the assertion that u € D(K) implies that
/(02\k|2 + m2chya(k) k) dk = || Kul® < oo, (5.1.8)

Thus Hy D F, and F is essentially self-adjoint if and only if its closure is
Hy, which can be proved by the same sort of arguments as in the Schrédinger
case.

5.2 Self-adjointness of Hamiltonians with a local
potential

One-particle operators of the form H = Hy + V, where V is some local one-
body potential function, occur everywhere in atomic and molecular physics.
As examples, we have the Coulomb energy —Z/r a.u. of an electron relative to
a point nucleus of charge Ze or the energy of an electron in some mean-field
potential of an atom or molecule. We can study (essential) self-adjointness
of the full operator H by considering V as a perturbation of the self-adjoint
operator Hy.

Suppose first that A and B are densely defined operators on H, that
D(B) D D(A) and that, for some real numbers a, b and for all ¢ € D(A),

[Boll < allA¢]l + bll¢]l- (5.2.1)

Then B is said to be A-bounded; the infimum of a is called the relative bound
of B with respect to A. If the relative bound is zero, then B is said to be
infinitesimally small relative to A, and we write B < A. Sometimes it is more
convenient to replace (5.2.1) with a related inequality

1Bg||* < a*|| 4| + b*||9]*. (5.2.2)
When (5.2.2) is satisfied, then (5.2.1) is also satisfied with a = a,b = b.
However, if (5.2.1) is satisfied, then (5.2.2) holds, but with a* = (1 + €)a?

and b = (1 + e 1)b? for each € > 0. Thus the infimum of a in (5.2.1) and
the infimum of @ in (5.2.2) are equal. It is also sufficient to prove estimates of
either form on a core for A.

The basic result is the Kato-Rellich theorem [3, Vol. II, p. 162]:

Theorem 5.1. Let A be self-adjoint and let B be symmetric and satisfy the
inequality

1Bl < all Ad[| + b4l

with relative bound a < 1. Then A+ B is self-adjoint on D(A) and essentially
self-adjoint on any core of A.

Also if A is bounded below by M, then A + B is also bounded below by
M —max(b/(1—a),a|M|+b), where a,b are the numbers appearing in (5.2.1).
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Wiist has extended this theorem to the case when the relative bound a = 1;
then A + B is only essentially self-adjoint on D(A) or on any core for A.

5.2.1 The Schroédinger case
We start [2] with the simple Schrédinger operator
H = HO + V(T)

where Hy = —1A is the self-adjoint operator of (5.1.3) for the case of three
space dimensions, n = 3. Suppose that the real-valued potential V(r) can be
split into two parts,

V(r) =Va(r) + Va(r), (5.2.3)
where Vi (r) € L%(R?) is square integrable and Va(r) € L>°(R?) is bounded.
Because V is real-valued, the operator defined as multiplication by V on the
domain

D(V)={¢|¢ € L*(R*),Vp € L(R*)}

is self-adjoint. Using standard inequalities from integration theory, we have

[Vollz < [Villzll¢lloo + [Vallcol]]2 (5.2.4)

so that D(V) contains C§°(R3) which is a core for Hy.
If ¢ € L*(R?) is also in D(Hy), then ¢ is a bounded and continuous
function. So for any a > 0 there is a b > 0 such that

[¢lloc < allHo ¢[2 + bl|||2 (5.2.5)

[3, Vol. II, Theorem IX.28]. Combining (5.2.4) and (5.2.5) gives
IVll2 < alVallzl|Hollz + (b + [[Valloo) [|0]l2,

which holds for all ¢ € C§°. Thus all potentials V' (r) for which (5.2.3) holds
are bounded by (Hy) on C§° with arbitrarily small relative bound a. Theorem
5.1 then allows us to infer that H is essentially self-adjoint on C§°.

This analysis covers most of the cases of practical importance. In the case

of the Coulomb potential,
V(T‘) = 72/7"

we can take
—Z hen 0 < < Ry,
Vi(r) = /r when 7] 1
0 when Ry < |r| < oo,

and a similar partition works for the screened Coulomb and mean field poten-
tials that are typically used in atomic structure. The extension to N-electron
systems with pairwise Coulomb interactions used in nonrelativistic atomic and
molecular structure theory is straightforward, and is thoroughly documented
in [2, Chapter 5, §5] and [3, Vol. II, Theorem X.16].
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5.2.2 The Dirac case

The Dirac operators require more delicate handling, though the underlying
principles are the same. Consider the important case of the Coulomb potential
V(r) = —=Z/r. The “uncertainty principle lemma” [2, p. 307], [3, Vol. II, p.
169] states that

/|7"|2 (r)d $§4/W“( N [Vu(r w_4/|k|| )2 d3k.

In conjunction with (5.1.8) this yields

47°

IVull? < allKul?, a= -5
c

when u € D(F). To apply the Kato-Rellich theorem we need a < 1, giving

Z < ¢/2 =~ 68, which makes the range of Z for which the Dirac operator

H=Hy+V (5.2.6)

is self-adjoint on D(F ) disappointingly small. A more subtle treatment is
given by Kalf et al. [4]; their result coincides with that obtained in §3.3,
namely Z/c < \/3/2 or Z < 118, which covers almost all the interesting cases.
Because Hy O F, these conclusions extend to the whole of D(Hy).

If we take the domain of Hy instead to be

D(Hy) ={¢|p € H,Hyp € H}, H =|[L*(R3*

then it can be shown that the closure of the minimal operator H defined by
(5.2.6) has the same domain when Z/c < v/3/2. We can identify D(Hy) with
the Sobolev space [ (R3)]* of 4-component spinors whose components and
first partials are all quadratically integrable. We shall see in §5.4 that the Dirac
Coulomb operator makes a transition from the limit point case at = 0 to
the limit circle case when Z = \/§c/ 2 =~ 118 consistent with the theoretical
restriction.

The failure of this analysis to tell us anything about the self-adjointness of
the Dirac Coulomb operator for Z > 118 is disappointing. The discussion of
boundary conditions in §3.3 showed that a further restriction of the domain
to spinors u such that ||r~'/2%||? is bounded restores the problem to the
limit point case at r = 0, and allows us to extend the range of Z for which
computations can be done up to Z = 137. Kalf et al. [4] have also found
a rather complicated way to extend the range of self-adjointness as far as
Z = 137. However, real nuclei are not point charges, and the finite size of
the nuclear charge density starts to produce noticeable physical effects for
relatively modest values of Z. It is then desirable to use a model with a finite
size charge distribution for determining V. A major change is the replacement
of the 1/r singularity with a finite cut-off. This restores the situation and



5.3 Radial Dirac operator 265

allows calculations to proceed to much higher values of Z. This behaviour has
been exploited in theories of superheavy elements and of quasi-molecules with
heavy element constituents [5] as well as the atomic and molecular calculations
described in this book.

5.3 The radial Dirac differential operator

The properties of central field wavefunctions are of fundamental importance
for atomic and molecular physics. The eigenfunctions of the Dirac equation
in spherical polar coordinates have the form (3.2.4)

_ 1 P(T)an(@v@)
o@) = (i@(rmm(e,w))

where the radial amplitudes satisfy the radially reduced equations (3.2.17)

<m02 +V(r)— E)P(r) + he (—Cii)l?(f) + fQ(r)) =0

he (dzy) + ,:P(r)> + ( —mc® +V(r) - E)Q(r) =0.

After shifting the energy to the usual nonrelativistic zero by writing ¢ =
E — mc?, this takes the form

T ten(r) = £ on(r),  tten(r) = (g(&) , (5.31)

for all r € Ry, where

vir) e (Cfa - :>
T, = . (d + ’:) —2m§i +V(r)

The matrix operator T, can be written as a self-adjoint differential operator

(5.3.2)

da

T, =
e dr

+ Wi(r), (5.3.3)

where

1=t = (1) o =1 (T8 i )

so that Z(r) = —rV(r). The radial two-component spinor u., has the norm
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[uew||® = / Ul () uen (r)dr = / (P2.(r) + Q2.(r)) dr. (5.3.4)
Ry Ry

The integral is finite for bound states, but diverges for scattering states.
Z(r) is a continuous function of  in applications to atomic and molecular
physics. For a point nucleus Z(r) = Z for all value of r. For a spherical
nucleus in which the Z protons are confined to a ball of radius Ry, V(1)
has a finite well-depth so that as r — 0, V(r) = —Z(r)/r ~ —vg +v2r? + .. .,
where the constants vg, ve, ... depend on the model and as r — oo, Z(r) — z,
where z is the degree of ionization of the system. When these conditions apply,
the operator T}, is self-adjoint on any finite interval [a, b] with domain D(T})
provided
u(r) € (L*a,b))?,  Teu(r) € (L*[a,b])?, (5.3.5)

provided the boundary condition
[evl () Tu(r)]” = 0 (5.3.6)

holds for every u,v € D(T)), which corresponds, in the manner of the dis-
cussion of the Dirac operator in three dimension in §5.2.2, to the Sobolev
space [W(l)(R‘S)]Q. The crucial boundary condition (5.3.6) mixes the large
and small components of u so that the handling of the boundary conditions
is more involved than for the Schrédinger equation.

5.3.1 The boundary condition at a singular endpoint

The linear differential system du/dr + A(r)u = 0 is said to have a singular
point at s if the square matrix A(r) has a singularity at r = s. From (5.3.3)
we see that Wy (r) has a singularity at » = 0, which is therefore a singular
point of the radial Dirac equation. Similarly by writing p = 1/r and exam-
ining the behaviour as p — 0 we see that it also has a singular point at oo.
Thus the radial Dirac equation, like the radial Schrédinger equation, has two
singular endpoints, and the theory can be developed along very similar lines
[6, Chapter 10].

It is useful to start by looking at a result for second order differential
equations of the form

Top = —¢" + V(2)d(x) = \d(x) (5.3.7)
on [0,00) with V() continuous is from [3, Vol. II, p. 151].

Theorem 5.2. (i) If S(\) # 0, then at least one solution of Top = A is in
L? near x = 0 and at least one solution is in L? near infinity.

(ii) If, for one X € C, both solutions of Ty = Ao are in L? near infinity (zero)
then, for all A € C, both solutions of T$ = \¢ are in L? near infinity (zero).
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Theorem B.3 shows that the existence and number of self-adjoint extensions
of an operator T' are determined by the deficiency indices ny,n_, which are
respectively the number of linearly independent solutions of T%¢ = =+i¢,
where T™* is its adjoint operator. To specify a suitable minimal operator we
really need a boundary condition at oo, which is not yet available. We can
avoid this by choosing D(T') = C§°(0, 00), the space of infinitely differentiable
functions with bounded support, such that T'¢ = Tp¢ for ¢ € C§°. Although
this operator T' is not closed. it is symmetric and T* is the operator with
D(T*) = {¢ € L? : Typ € L*} such that T*¢ = Tyé.

Because T is a second order differential operator, the differential equation
To¢ = A has two linearly independent solutions for any A. A solution ¢ of this
equation is in D(T*) if and only if it is in L?(R, ). According to Theorem 5.2,
two linearly independent solutions of Ty¢) = A¢ may be in L?(R, ), in which
case all solutions are in L?(R, ). It is known that if this happens for any choice
of X in either the upper or the lower half-plane, then it happens for every A
in either half-plane [6, Lemma, p. 153]. If Top = ¢ then Tf¢* = A*¢* and
as ¢ € L?(R,) then ¢* € L?(R,); what happens in one half-plane is mirrored
in the other, and all solutions are in L?(R, ) for all A, real or complex. So the
possible deficiency indices (n4,n_) are (0,0), (1,1) or (2,2). It is easy to show
that there is always at least one square integrable solution in either half-plane,
which rules out the (0,0) case.

The next step is to examine the behaviour of the solutions near a singular
endpoint [6, p. 202]. For Sturm-Liouville operators such as Tp, there are two
possibilities. Either for some complex A with A > 0 there is one square-
integrable solution in the neighbourhood of the singular endpoint, the so-called
limit-point case, or there are two square-integrable solutions, the so-called
limit-circle case, and every linear combination of them is a valid solution. In
the limit-point case, the condition that a solution is square integrable near the
endpoint selects a homogeneous boundary condition which fixes the solution
uniquely. This is what is usually assumed without discussion in applications
of nonrelativistic quantum mechanics. In the limit-circle case, an additional
boundary condition, usually determined by physical considerations, is needed.

5.3.2 The Dirac radial operator with one singular endpoint

The Dirac equation cannot be transformed into a Sturm-Liouville problem
to which the above argument applies. However, the analysis of the radial
Dirac operator on R, is remarkably similar to that of the radial Schrodinger
equation and gives useful information on the self-adjointness properties which
we shall need to construct numerical solutions.

Lemma 5.3. Let uy(r) and ux(r) satisfy (5.5.1) in some finite interval [a, ]
with parameters (in general complex) €1 and ey respectively. Define

s12(r) = cur(r) Juz(r) = e[ Q5(r) Pr(r) — P3 (r)Q1(r)] .- (5.3.8)
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so that s12(r) = —s5,(r). Then
b
s12(b) — s12(a) = (e1 — 53)/ ug(r) uy(r)dr. (5.3.9)

a

The proof is straightforward; just calculate dsj2/dr using (5.3.1) and integrate
over (a,b). The lemma has a useful corollary:

Corollary 5.4. In the case when €1 = €5 = €, we can write u; = ug = u.
Then

b
s(b) — s(a) = 22’%5/ ul (1) u(r) dr. (5.3.10)
a
It follows that if ¢ is real then s(r) is independent of r, and that with this
notation (5.3.6) is just s(a) = s(b).
Consider now the initial-value problem for the two-dimensional linear dif-
ferential equation (5.3.1). Suppose that we can write, with arbitrary normal-

ization,
u(a) = w1 + muws, (5.3.11)

where wy and ws are any two linearly independent 2-vectors, say

e (D) e ()

and m = Q(a)/P(a) is an arbitrary parameter. Let u1(r) and us(r) be solu-
tions of the initial value problem with respective initial values w; and ws so
that

w(r) = ur(r) + mua(r) (5.3.12)

is the solution of the initial value problem with initial value u(a) (5.3.11).
This generates s(r) as a quadratic complex expression in m,

s(r) = s11(r) + ms1a(r) +m*so1(r) 4 |m|*saa(r), (5.3.13)
where s;;(r) = cuj(r)Juj(r). The initial conditions are
s11(a) = sa22(a) =0, s12(a) = —c¢, s91(a) = +¢, (5.3.14)

so that
s(a) = —m+m* = —2icSm.

Inserting this in (5.3.10) and writing A\ = €/c gives

s(b) = 2ic (%m + SA /b ul(r) u(r) dr) . (5.3.15)

If we replace u(r) by wug(r) in (5.3.10) we find
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b
S22(b) = 2@'0%)\/ ub (1) ua (r) dr. (5.3.16)

We focus on s(b); it is convenient to set s(b) = 2icF (b, m) and to write
F(b,m):=A|m[* + BRm+CSm+ D (5.3.17)

where A, B, C, D are all real numbers defined by

(P2Q3 — Q2P5),

(PQ7 — Q1PY),

(P2Q1 — Q2FY)

( )

b

8
oy}
4
) 9
Il
®
o

in which we have omitted the arguments r = b from the components of u(r)
and wug(r), For fixed b, the equation F'(b,m) = 0 represents a circle in the
complex m-plane, with centre m(b) = —(B + iC)/2A and radius R(b) given
by

4A2R(b)? = B% + C? —4AD = |P1Qy — Q1 Po|* = |u (b) Jua (b)|.

Equation (5.3.16) shows that
b
A= \S)\/ ub (r)ug (1) dr > 0. (5.3.18)

It is easy to show that u{(r)Juz(r) is independent of r, and using the initial
conditions gives

R(b) = 1/2A.

Denote by Dy, the interior of the circle F'(b,m) = 0, where we take Sm > 0;
the other case is similar. Points of the m-plane will be outside Dy, if F'(b,m) >
0 and inside if FI(b,m) < 0. Because the radius R(b) of the disk is, by (5.3.17),
strictly decreasing as a function of b, Dy C Dj whenever b’ > b, so that the
disks shrink as b — oo. The limit-point case occurs when R(b) — 0, and there
is a unique value m = m(oo) such that u(r) = ui(r) + m(co)us(r) for which
the solution is square integrable. It follows from (5.3.15) that the solution is
square integrable, with norm

lu|® = /00 ul (r)u(r) dr < Sm(oo) /I

The condition of square integrability is equivalent to a boundary condition.
However, it is important to remember that this argument tells us nothing
about the behaviour of the individual components of u(r) as r — oo, and this
must be recalled when constructing numerical solutions. In the limit-circle
case, R(b) — R(c0) > 0; every value of m in D, gives a square integrable
solution, and we require a supplementary boundary condition to make the
operator self-adjoint.
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5.4 The radial Dirac equation for atoms

Atomic and molecular calculations often start from a solution of Dirac’s equa-
tion for some potential V() given by

V(ry=-Z(r)/r (5.4.1)

where Z(r), the effective central charge seen by an electron at a distance r
from the nucleus, decreases as r increases. Thus we suppose

Z(r)—=2z>0, r—o
where z < Z is the residual ionic charge seen by the electron, and also that
Z(r) = Zo+ Zyr + Zor* + ... (5.4.2)

in the neighbourhood of r = 0. This property characterizes a number of com-
monly used nuclear models.

In §3.3, we saw that u(r) ~ exp(\r) as r — oo, where \? = ¢ — E?/c?
and F is real. There are two situations:

e |E| < ¢ All solutions in this part of the spectrum correspond to bound
states. Only one solution with A < 0 is square integrable at infinity, so this
is a limit-point case.

e |E| > % )\ = 4ip, where p = +,/E?/c2 — ¢2 is interpreted as the mag-
nitude of the 3-momentum vector. Solutions are linear combinations of
particular solutions with asymptotic form exp(£ipr) corresponding to the
limit-circle case.

The nuclear model potentials determine the behaviour near » = 0, depend-
ing on the coefficients of (5.4.2):

e Point nucleus: Zy #0; Z, =0, n>0.
This is the normal choice in nonrelativistic calculations. Physical conse-
quences of the finite size of the nuclear charge distribution become sig-
nificant in the lower half of the Periodic Table, especially for inner-shell
processes.

o Uniform nuclear charge distribution: A model which, though unphysical,
is nevertheless very useful, spreads the nuclear charge uniformly over the
interior of a sphere of radius Ry, so that

3Z/47R3, when 0 <r < Ry,
PN(T)Z{ / N - =

0, when r > Ry,
gives
37 r?
———(1— 255 |, when 0 <r < Ry,
Vi (r) = 2ZRN 3R%, (5.4.3)

-, when r > Ry.
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Thus when r < Ry, the non-zero coefficients are
Zy=0, Zy=+3Z/2RN, Zy=0, Zs3=—Z/2R%,

whilst for » > Ry there is only one non-zero coeflicient, Zy = Z, giving
an unscreened Coulomb potential.

Spherical surface charge distribution: Like the uniform charge distribution
above, this is unphysical. It recognizes the fact that the mutual repulsion
of the protons inside the nucleus makes it more probable that they will be
located near the nuclear boundary, r = Rpy. Real nuclear electrostatic
potentials are likely to lie between the uniform charge model and the
surface charge model inside the nucleus. The potential is constant for r <
Ry, so that there is only one non-zero coefficient, Z; = Z/Ry for r < Ry,
and Zyg = Z for r > Ry. Whilst this is simple and has been used to
understand the effect of changes in the nuclear parameters on electron
binding energies and wavefunctions it has some technical disadvantages.
Whilst the potential is continuous, the electric field is discontinuous at
r = Ry because all the nuclear charge resides on the surface; the potential
and the field are continuous for the uniform charge density distribution,
but it has a discontinuity in the field gradient. Numerical methods of
solution must take this into account.

Gaussian nuclear density distribution: The majority of molecular structure
codes are based on wavefunctions written as a linear combination of Gaus-
sian type functions (GTF). This is also the case for relativistic molecular
structure codes, making it easy to incorporate a Gaussian density distri-
bution to model nuclear charge distributions. The density distribution

pn(r) = Z (A/m)*/2 exp(=Ar?)
gives the potential
Vn(r) = —(Z/r) erf (VAr), (5.4.4)

whose power series expansion about » = 0 has coefficients

Zgn:O, ’I’LZO; 2122\/)\/7T, Z3:—2(/\/3)\/)\/7T,...

where ) is related to the RMS radius of the distribution, Ry (in atomic
units) by B
A= 1.50/R%.

A more realistic nuclear density distribution can be constructed by fitting
to a sum of Gaussian densities.
Fermi distribution: The nuclear charge density has the form

_ Po
1+ exp[(r — Ry)/d]’

pn(r)

where pg is chosen so that
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(o)
Z = / 42 py (r) dr.
0

This two-parameter model has a uniform core with a “skin” in which the
density falls from ~90% to ~10% of its central value in a short distance
typically ¢ ~ 107® a.u. Then d = ¢/41n 3.

All these models of the nuclear charge distribution have been chosen for their
convenience in practical calculations rather than as faithful representations
of actual nuclear charge distributions. The main reason for this is that the
dominant shift in orbital energies, responsible for the nuclear volume isotope
effect, is sensitive primarily to the RMS radius, Ry, of the nuclear charge
distribution [7, §8.3]. Measured values of Ry, which is isotope dependent,
can be obtained from the literature, but it is often sufficient to use one of
several statistical expressions found in the literature. Thus for A > 16 [7,
§8.3] suggest)

Ry~ (1115 A3 42151 A7Y/3 — 1, 74247 ") x 107°

atomic units; many similar formulae can be found in the literature. Real nuclei
are mostly non-spherical, and generate both electric and magnetic multipole
fields which are responsible for hyperfine interactions.

5.4.1 Power series solutions near r = 0

The radial amplitudes

can be expanded in a power series

u(r) =" ug +urr +Fugr + .., up = (Z:) (5.4.5)

near the origin, where the index v, p, and g are constants that depend on
the nuclear potential model.

Point nucleus model: For a Coulomb singularity, Zy # 0, the leading coef-
ficients satisfy indicial equations

—Zopo + c(k —7)q0 = 0,
c(k+7)po — Zogo = 0, (5.4.6)

so that

Z ce(k+7)
=4y /r2 = 22/c2, 0 _ 0 - . 5.4.7
7 o/ po  c(k—7) Zy (5.4.7)
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e Finite size nuclear models: In this case Zy = 0, so that the potential is
finite at » = 0. The indicial equation (5.4.7) reduces to v = +|x/|, so that
for k < 0,

P(r) =por't' +0(r'?), Q(r) = '™+ O(r'Y), (5.4.8)
with
a1/po = (B —mc® + Z1)[[e(2L+3)], qo=p1 =0,
and for k > 1,
P(r)=pir't +00"?), Q(r) = qor' + O(r' ), (5.4.9)

with
pi/qo = —(E—mc® + Z1)/[c(2L+1)], po=q =0.

For finite size nuclei, the power series expansions consist of purely even powers
for one component with purely odd powers of r for the other component. The
power series of both components for point nuclei consist of all powers v + n
for positive integer n.

5.4.2 Power series solutions in the nonrelativistic limit

Many of the pathologies that arise from a naive treatment of the numerical
solution of Dirac problems can be understood after examining the behaviour
in the nonrelativistic limit ¢ — oo, where we expect

P(r) — O(r'th).
Finite nuclear models.
The behavior is entirely regular as ¢ — oo:
P(r) =0, Q(r)=0(1/c) = 0.
Point nuclear models.

The behaviour when x < 0 is entirely regular. However things are different
when « is positive. Because

2
(5.4.7) shows that the leading coefficient pg vanishes when ¢ — oo, so that,
P(r) ~ prr'T (1 4+ O(r?)),when s > 1, l=r (5.4.10)

All higher powers of odd relative order vanish in the limit for both components.
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5.4.3 The boundary condition at the origin

The requirement for radial spinors to be square integrable as r — 0

/ Dg . (r)dr <oco, R >0,
0

where
D u(r) = [P x(r)]® + |Qp.x(r)]?,

is equivalent to a boundary condition. For a point nuclear model, Dg (1) ~
r*27 as r — 0, this condition holds when £2y > —1. Only the solution
with 4 > 0 is acceptable when 2|y| > 1, or Z < a~!4/k? —1/4, and the
second solution must be dropped. This corresponds to the limit point case.
In the special case |k| = 1 or j = % this implies Z < ¢v/3/2 ~ 118.6. For
zZ > C\/g/ 2, both solutions are square integrable near the origin (the limit
circle case) and we need an additional constraint to recover a self-adjoint
operator. A physically acceptable solution must also have a finite value for
the expectation of the Coulomb potential so that

/ DEﬁ(r)% <oo, R >0. (5.4.11)
0

This is always satisfied by the solution with v > 0 for all |Z]| < a~!|x], but
not by any solution with v < 0. Imposing this condition restores essential
self-adjointness (on a restricted domain) for 118 < Z < 137.

In the case of a finite nucleus, the two leading exponents reduce to [ + 1
and —[ respectively. When [ > 0, it is clear that we have the limit point case
and square integrability selects the exponent [ + 1. However when [ = 0, the
second solution is bounded as r — 0 and so we have the limit circle case
again. We now have to restrict the domain of the operator to solutions for
which (5.4.11) holds.

It is seldom remarked that the same thing happens with the Schrédinger
equation; for example Pauling and Wilson [8, p. 122] simply state that the
negative exponent “does not lead to an acceptable wavefunction”. This is
entirely correct, although neither Pauling and Wilson nor, as far as I am
aware, the authors of other books on elementary quantum mechanics note
that it is necessary to impose the condition (5.4.11) when [ = 0, just as in the
Dirac case. In contrast, Dirac [9, §38] argues that the second solution for I = 0
would not be acceptable because it would imply the presence of an additional
delta function singularity on the right-hand side of the Schrédinger equation.

5.5 Variational methods in quantum mechanics

Variational methods are widely used in the quantum mechanics of atoms and
molecules. The Ritz method seems to have been applied first to the ground
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state of helium by Kellner [10]; the work of Hylleraas [11, 12, 13] on the
ionization potentials of the helium isoelectronic series, in particular his use
of inter-particle coordinates, seems to be much better known. Most of the
standard derivations of nonrelativistic [7, 14, 15] and of relativistic atomic
self-consistent field theory [16, 17, 18] have depended on variational principles,
as have many of the methods employed in scattering theory [19].

Most expositions of variational methods in nonrelativistic quantum me-
chanics make much of the fact that the Schrodinger operator is semi-bounded.
Although Swirles [16] wrote down relativistic atomic Hartree-Fock equations
using a variational principle, she carefully noted that the Dirac Hamiltonian
was not semi-bounded so that her approach was “provisional”. Nevertheless,
the equations she derived were mathematically consistent and no unexpected
problems were encountered in constructing numerical solutions using the fi-
nite difference methods developed by Hartree and his colleagues [14]. The
provisional approach proved well-founded, because it relied only upon rela-
tions which make the energy functional stationary without reference to any
lower bound.

Ritz methods, in which the orbitals are approximated by a linear com-
bination of suitable functions, usually referred to as basis sets, provide the
only practical route for solving quantum mechanical problems for molecules
and solids. Roothaan’s students Synek [20] and Kim [21, 22] in the mid-1960s
were the first to devise relativistic self-consistent field equations for atoms in
this way. Whilst Kim was able to generate a plausible solution for the ground
state of the beryllium atom, he encountered some numerical instabilities that
were not understood at the time. The method was not competitive with finite
difference methods on the computers of the day, and although further work
on the atomic problem was done by Kagawa and others [23, 24] some 10 years
later, progress was slow. Real trouble was first encountered when quantum
chemists tried to apply the customary nonrelativistic Ritz procedures to the
full Dirac equation as well as to the radially reduced equation. Thus Schwarz
and Wallmeier [25] and Wallmeier and Kutzelnigg [26] obtained unacceptable
results even for the simplest case, the hydrogen atom. Spurious low-energy in-
truder states appeared along with solutions resembling the physical low-lying
states. The pathological behaviour, discussed also in §4.13.3, was attributed
to “variational collapse” [25] or “finite basis set disease” [27]. The results
were sensitive to basis set dimension and failed to stabilize in the manner of
nonrelativistic calculations as the dimension of the basis set was increased sys-
tematically [26, 28, 29]. In the absence of any consensus on remedies, attention
switched by 1984 to semirelativistic approximations [30]. We now understand
the importance of using spinor basis functions for Dirac calculations which
incorporate the limiting behaviour of §5.4.1 and §5.4.3 at the singular end-
points of the Dirac radial operator. It is necessary for the basis functions to
embody the correct connections between the radial components in the region
in which relativistic motion is most probable.
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To make maximal use of the Rayleigh-Ritz method in relativistic, as well
as nonrelativistic quantum mechanics, we need criteria for convergence of
energy eigenvalues, wavefunctions and expectation values for ground and ex-
cited states and also for transition amplitudes. We seek ways to characterize
Rayleigh-Ritz approximations that work for both nonrelativistic and relativis-
tic quantum mechanics.

5.5.1 Min-max theorems and the Ritz method

Let T be a self-adjoint operator with a domain D that is dense in the Hilbert
space ‘H. Assume, for simplicity, that 7" has a simple point spectrum, or-
dered so that —oo < ty < t; < to < ..., with corresponding eigenfunctions
Ug, U1, U, - .. Let My, = {ug,u1,...,up—1} be the linear span of the eigen-
functions corresponding to the n lowest eigenvalues of T'. Using Dirac bra-ket
notation, we define the Rayleigh quotient

R(u) :== (u|T|u) / (u|u) (5.5.1)
for any nontrivial function u € D.
Theorem 5.5. Let M;- be the orthogonal complement of M,, in D. Then

t, = min R(u).
ueEM;;

Proof: For all u € D we have

(w|T|u) = Ztk|u|uk

If u € My, (u|ug) =0, k=0,1,...,n — 1, so that

([T u) =Y tel(ulu)® >t Y Hulup)|* > to(u]w).

k>n k>n

So R(u) > t,. Since u,, € M:-, R(u) attains its lower bound at u = u,,, which
proves the theorem. |

Theorem 5.5 is familiar from elementary quantum mechanics textbooks. It
assumes throughout that the first n exact eigenfunctions are known, but this
is rarely the case in practice. What we usually need is a set of functions, say
Wy = {wo,w1,...,w,—1} which in some sense approximates the manifold

M.
Theorem 5.6 (Weyl-Courant). Let

OOWn) = uglvl\g R(u);
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then

RO = g, e, R

where S, is the collection of all n-dimensional linear manifolds in D.

Proof: From the previous theorem, 8(M,,) = t, so that max0(W,,) > tp,.
The theorem is therefore proved if we can exhibit, for each choice of W,,, an
element w € Wit such that R(w) < t,,. Suppose that

W = CoUug + C1UL + ...+ Cplly,

where the coefficients ¢, cq, ..., ¢, must be chosen so that, with respect to
a basis {wg, wi, ..., wp_1} of Wy, w is non-null and (w,wp) = (w,w;) =
.+, (w,wp—1) = 0. This is always possible, as we have to find n + 1 unknown
coeflicients c¢g, c1, ..., ¢, subject only to n linear equations of constraint. If
the eigenfunctions {ug, u1, ..., u,} are orthonormal, then
w|T |w T te] cxl?
R(w)::< | | > _ E:%#)k| ﬂ <t,
(w]w) > ko | ¢kl
which completes the proof. |

We usually require the set {wg} to be linearly independent and to be
normalized. We shall assume, for the purposes of this section, that the set is
also mutually orthogonal, although we shall later want to lift this restriction.
So now we can write each w € W, in the form

W= coWwo + 1wy + ...+ Crh—1Wn—_1;

so that
n—1 n—1
R(w)= > ¢Tye; [ > lewl
i,j=0 k=0

where the simple form of the denominator is a consequence of the assumed
orthonormality, and where

T = (w; |T|w;), 4,5=01,...,n—1.

The effect of restricting w to the linear manifold W,, is therefore to replace
the operator T', which is in general unbounded, by a bounded operator 7T;, on
W,, defined by

T, =P, TP,

where P, is the orthogonal projector onto W,,. The operator T;, is represented
by the square matrix T,, whose elements are the numbers T;; defined above.
It is usually convenient to choose the basis so that the matrix T, is real
symmetric; its n eigenvalues Ti(n),i = 0,1,...,n — 1 can be characterized
exactly as in Theorem 5.5, with W,, replacing M,,. We order the eigenvalues
so that Tén) < Tl(n) <...< 7'7(171)1.
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Theorem 5.7 (Poincaré). For each integer n > i,

fM>t i=0,1,2,...

Proof: We prove Ti(n) > t; for some fixed value of i. Pick a trial element from
W,, in the form
w:d0w0+d1w1 ++dlw1

such that w is non-null and orthogonal to wg,ws,...,w;—1. We can always
find such an element since we have only to solve i linear equations for 7 + 1
unknown coefficients do, dy, ..., d;. Theorem 5.5 gives us R(w) > t;. However,

_ Zk=o 7 ldel® <M
22:0 |dk|2

establishing the result. |

R(w)

This theorem has a useful corollary which enables us to characterize ap-
proximations to the eigenvalues of T' without requiring a knowledge of the
eigenvalues of lower index and without having to search for an extremum over
the infinite subspace Wi-.

Theorem 5.8 (Poincaré). Let S,, be the set of all n-dimensional linear man-
ifolds of D and let W,, be a particular member of S,,. Define

O(W,) = max Rw):

then
tn—1 = _ min O(W,).

WnE€Sn

Proof: We follow the same method as in the last theorem. This establishes
that 6(W,,) is the maximum eigenvalue of the restriction of T' to W, and
OWh) <t for al W,, € S,,. We observe that 6(M,,) = t,,_1 which proves
the theorem. Theorem 5.8 gives the theoretical justification for the Galerkin
method, in which we seek approximate solutions of the equation

(T—-7w=0, wewWw,
by requiring that the residual
0:=(T—-1)w
is orthogonal to each of the eigenfunctions w; of the restriction of T' to W,,:
(6,w;)=0, i=0,1,...,n—1.

If w € W,,, we can write
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W= Ccowy +Ccrwi + ...+ Cp—1Wn—_1

from which the condition

n—1
> (Ti; —78i)e; =0, i=0,1,...,n—1 (5.5.2)
=0

follows. Thus 7 must be one of the eigenvalues of the matrix operator T,,. B

5.5.2 Convergence of the Rayleigh-Ritz eigenvalues in
nonrelativistic quantum mechanics

The theorems of the last section tell us that we can approximate the eigenval-
ues and eigenfunctions of operators that are bounded below by diagonalizing
finite matrices on suitable linear manifolds in the Hilbert space H. We actu-
ally need rather more: it is essential to be able to use these approximations
to estimate physical observables. This requires a deeper analysis of the con-
vergence of Rayleigh-Ritz approximations in quantum mechanics. Klahn and
Bingel [31, 32] first studied the convergence of basis set approximations of
eigenvalues and eigenvectors, and Klahn and Morgan [33] extended this anal-
ysis to the convergence of expectation values and transition amplitudes of
common quantum mechanical operators. The theory is sufficiently complete
to provide some foundation for practical calculations in both nonrelativistic
and relativistic quantum mechanics.

We consider functions defined on a suitable L? space H with inner product
(u,v) and corresponding norm ||u|| = (u,u)'/?. Lebesgue measure is implicit;
Klahn and Bingel [31, 32] use that of 3N-dimensional Euclidean space, but
their results are not restricted to this choice. Suppose that B is a positive-
definite and self-adjoint linear operator with domain Dpg, dense in H. Then
there exists a constant 5 > 0 such that

(u, Bu) > B(u,u), Yu € Dg.

Assume now that the lower part of the spectrum of B contains a finite
or infinite number of isolated eigenvalues. Suppose we pick a basis set,
& :={pm,m =1,2,...}, which is complete in H. As & is complete, we can
choose a linear combination of the functions ¢,, which approximates any ele-
ment Y € H as closely as we please. Is this enough for E-convergence: can we
guarantee that Rayleigh-Ritz approximations to eigenvalues and eigenstates
converge as we enlarge the linear manifold of basis functions? Mikhlin [34]
was able to prove E-convergence if the set @ is complete in the energy space
‘Hp, defined as the closure of Dp with respect to the B-norm

lull = (u, Bu)'/2.

Bonitz [35] then extended this to excited states.
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Theorem 5.9 (Bonitz). Let the set @ be complete in Hp. Then the Rayleigh-
Ritz method for the positive-definite operator B wusing trial functions of the

form
M

w(M) = Z Cm¢m

m=1
is equivalent to a matriz eigenvalue problem of the form (5.5.2). The eigen-

values bEM) of the matriz By converge as M — oo to the exact eigenvalues
bo, b1, ...br, where by is the lowest exact (isolated) degenerate eigenvalue of
B.

We refer the reader to the original papers for the full proof. It rests on the
expression

(@, Bu®™) = b; < 26,872 — will + w0 —wil}

for the difference between the estimate (w®), Bw®™)) and the exact eigen-
value b;. This inequality is valid, in particular, for w() = wZ(M), where wZ(M)
is the i-th eigenvector of By;. The Ritz eigenvalues are characterized by the

Weyl-Courant theorem 5.6 as

(M) (M)
M) = min w (5:5.3)
w (M) GD(M) (’LU(M)”LU(]V[))

where
DM = {w e DM | (w,w™) =0, j < i}.

and DM) c & is the linear span of ¢y, ..., dn—1. Thus b((JM) is the overall
minimum of (5.5.3) on D). If the Ritz eigenfunction wéM) does not converge
to the ground state, then by (5.5.3), no sequence w™) e DIM) can be found
such that béM) converges to by, contradicting the assumed completeness of the
set @ in Hp.

More specifically, the nonrelativistic molecular Hamiltonians describing
atoms, molecules and solids have the form

H=T+YV,
where
1 L
T 2 }: 2
§p 2 k,lpk

with domain
Dy = {u(r)| (1 + p?)u(p) € L*}

and %(p) is the Fourier transform of u(r), whilst
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N

1 1
V:_EA:ZAZ’/"A—’_Z?,

i=1 " i<j Y

where Z4 is the charge on nucleus A, r;4 is the distance between A and
electron ¢ and 7;; is the separation of electrons ¢ and j. It can be shown that
V is T-bounded so that

IVul < a||Tul|| + b||ul|, v € Dr, (5.5.4)

where a can be taken arbitrarily small. It follows from Theorem 5.1 that H
is self-adjoint with domain D7 and that all eigenfunctions of H are elements
of Dr. Using (5.2.2) we can deduce that V is also relatively bounded by T in
the quadratic form sense,

|(u, V)l < &I T 2ul| + '||ul, (5.5.5)

where the constants @’ and b’ > 0 are positive, and a’ can be made arbitrarily
small and T'/2 is the square root of the positive-definite operator T, with
domain
Dpijs = {u(x)| (1 + pl)i(p) € L2}

Since T/? is a maximal multiplication operator, it is self-adjoint on Dyi/2
as is the operator (1 + T)'/2 on the same domain. The condition (5.5.4) is
more restrictive in this respect than (5.5.5) as the latter can still be valid for
potentials that violate (5.5.4).

The Hamiltonians, H, are not positive definite although they are always
bounded below. However, the operator

B=c+H

is positive definite for some positive values of ¢, and Dp = Dp. Now choose a
basis set ¢ complete in the energy space Hp with norm |ju|/p = (u, Bu)'/2.
Then Theorem 5.9 assures us that the Rayleigh-Ritz procedure based on &
converges.

Criteria for convergence in suitably defined Hilbert spaces of this sort
which do not depend on the details of the potential V have been devised
by Mikhlin, Kato and others. This is straightforward when V satisfies the
condition (5.5.5): define a new energy space H 4 that is the closure of Dy with
respect to the norm |ju||4 = (u, Au)'/? with A = ¢+ T. The condition (5.5.5)
is sufficient to make the A-norm and B-norm equivalent, in the sense that we
can find positive constants ki, ko such that

killulla <lullp < kallul|a,Vu € Dr.
This leads to

Theorem 5.10 (Mikhlin’s criterion). Let the basis set @ be complete in
Ha. Let H have eigenvalues By < E1 < ... < E; < ..., where Ey is the first
evact degenerate eigenvalue. Then the Rayleigh-Ritz method with respect to
the basis set @ converges.
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The proof follows the same lines as Theorem 5.9, being based on an esti-
mate of the form

(w™ Hw™) — B; < 2|Ele™?|w™) — w4
+(2+2d" + Ve [Jw™) — w4,

The conclusion does not depend upon the precise value of the constant c
because T is itself positive definite.

The energy space H 4 can also be defined as the closure of D with respect
to the A’-norm ||ul| a» = (u, (c+T"/?)?u)'/2. This choice enables us to identify
the domain as the Sobolev space WQ(I) consisting of all L? functions whose
(generalized) first derivatives are also in L2.

It is usually more convenient to express Mikhlin’s criterion as a condition
on sets of functions in L? rather than as completeness in # 4. This can be
done using the following lemma [36]:

Lemma 5.11. Let Lf) be the Hilbert space of all quadratically integrable func-
tions with positive-definite weight function p. Then @ is complete in Lz if and

only if {p*/? ¢} is complete in L2.

This makes H 4 an Lf) space in the momentum representation with p =c+ 7T
if we use closure with respect to the A-norm or p = ¢+ T/ if we use closure
with respect to the A’-norm. With this interpretation, we can write the last
theorem in the form

Theorem 5.12. The set & = {¢,,} is complete in H if and only if either
{(c+T)2¢m} or {(c+TY?)$} with ¢ > 0 is complete in L?.

This sort of consideration leads to

Theorem 5.13 (Kato’s criterion). Let the system {(c + T)¢m}, ¢ > 0 be
complete in L?. Then the Rayleigh-Ritz method for the eigenvalues of H based
on the set & = {¢p,,} converges for all states to the exact eigenvalues of H.

The set {(c+ T)pm}, ¢ > 0 is complete in L? if and only if & = {¢m}
is complete in H 42, defined as the closure of Dy with respect to the A%-norm
lullaz = (u, A2u)12 = |[(c 4+ T)ul

The first part of the theorem is based on a characterization of the Ritz eigen-

values using H itself rather than B, using an inequality

a+ |Ei]
c

(0, ) - B < | # 0 1] [0~ il

The second part involves recognizing that H 42 is an L% space in the momen-

tum representation with p = (¢ + T)? and Dy = Hye = 2(2), where the

Sobolev space WQ(Q) consists of all L? functions whose (generalized) second
derivatives are also in L2



5.5 Variational methods 283

The different convergence criteria are, of course, inequivalent though re-
lated. The spaces involved satisfy

L? D Ha D Hae

and we have

Theorem 5.14. Let & = {¢,,} be complete in H q2: then @ is complete in
Ha. Also let @ = {¢,,} be complete in Ha: then @ is complete in L?.

Note that assertions of the converses are false: there exist sequences which are
complete in L? but which are not complete in H 4, and so on.

5.5.3 Convergence of the Rayleigh-Ritz method in nonrelativistic
quantum mechanics

So far we have criteria for convergence of Rayleigh-Ritz eigenvalues to the
exact eignvalues of nonrelativistic Hamiltonians. In practice, we need to work
within a finite M-dimensional subspace, and we should like to know how close
our eigenvalue estimates are to the exact values, in what sense approximate
eigenfunctions wZ(M) = Ppru; defined on this subspace are close to the true
eigenfunctions u;, and whether the approximate expectation values and tran-
sition matrix elements derived from them are sufficiently close to the true
values to be of practical use.

Rayleigh-Ritz eigenfunctions converge in the mean to the exact eigenfunc-
tion whenever the Ritz eigenvalue converges to the exact eigenvalue. This
follows from the inequalities

(M)

) ol < 27
[37] and
oo™ =) < 2 E(i) Sy R St B
i =0
[38] where

Convergence of the wavefunction in the A-norm (¥-convergence) follows
from

lwi™ — w3 < (BEMD = E)[(1 - )™ + 2(Eir — Ei) " Hi

where
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i—1
H=le+ O + BN —a) 14 G2 S (Bii — Ej)
j=0

Thus ¥-convergence (in the A-norm) is a necessary condition for E-convergence,
and we have

Theorem 5.15. A necessary and sufficient condition for the Rayleigh-Ritz
method to converge to the lowest N exact non-degenerate eigenvalues is that
the lowest N exact eigenfunctions of the Hamiltonian can be approximated in
the A-norm with any desired accuracy in terms of the basis.

This is about as far as we can go to characterize the convergence of
eigenvalues and eigenfunctions. It seems to be impossible to make definite
statements about Rayleigh-Ritz convergence in the A% norm, even when the
method is F-convergent. We might hope to say something about convergence
of the Schriodinger equation in the mean, that is to say of the mean square

residual
I(H — EMyal™) 12,

when the Rayleigh-Ritz method is E-convergent, but this seems not to be the
case. It is known however that, when the Rayleigh-Ritz method converges,

the mean square residual and ||w§M) — u;||42 converge or diverge together.
The outcome of this lengthy investigation, according to Klahn and Bin-

gel [31, 32], can be summarized quite simply. As usual, we build many-electron

wavefunctions from products of one-body wavefunctions for which the space

A can be identified with the Sobolev space Wi" (R3) ¢ L2(R3) equipped with
the norm
||1/JH$4/2§1> = (W 14T u) = (1 +T)"u| . (5.5.6)

Thus we have only to construct an M-dimensional basis set W) that, as
M — o0, is complete in Wél)(R?’) to be certain of E-convergence both to
eigenvalues and eigenfunctions of the Hamiltonian.

This analysis has been extended by Klahn and Morgan [33] to convergence
of expectation values and transition matrix elements. They rely on the

Lemma 5.16. For any trial function w™) € WM) the sequence
(A = (D] 4] wD)

converges to (A) = (u| Alu) if and only if w™) — w as M — oo in the
A-norm.

This is a direct consequence of two inequalities
[(A) M — (A)] < [w™ —ulh + 2(A4) 2w — w4

and
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™ — % < ()P0 — ()] + 2] Aul] - [0 — ul].

Thus the set VW spanning Wg(l) must be A-complete for the sequence of
Rayleigh-Ritz eigenfunctions {w(M )} also to give a convergent sequence of
approximations (A)M).

We can avoid having to deal with A-completeness if the operator A is rela-
tively form-bounded by T': that is, there exists a pair of non-negative numbers
a,b such that

[(u] Alu)| < afu|u) +bu|T |u), VueD(T). (5.5.7)

This includes a wide range of operators: bounded operators, for which we can
set b = 0; Coulomb potentials; T itself (with a = 0 and b = 1); components of
the momentum operator p; and nonrelativistic atomic and molecular Hamil-
tonians, H. Clearly, T' can be relatively form bounded by H + ¢, where ¢ > 0
is chosen large enough that H + ¢ has a purely positive spectrum. Then if
(u] A |u) satisfies (5.5.7), we choose ¢ > 0 so that T'+ ¢ is strictly positive, and
the sequence w™) is E-convergent to 1 in the T + ¢ norm, then

™ = ul} < max(a/e, )™ — ulf.

so that {w(*)} is also A-convergent to u. It is sufficient for W to be complete in
the Sobolev space WQ(I). Finally, it is straightforward to show that transition
matrix elements of the form (wEM)| A \wﬁ-M)) converge to the desired limit

(u;j] Aluj) as M — oo provided the sequences {wEM)} and {w§M)} are also
A-convergent.

5.6 The Rayleigh-Ritz method in relativistic quantum
mechanics

The Rayleigh-Ritz method can be applied to relativistic problems in atomic
and molecular physics along similar lines by replacing nonrelativistic single
particle functions by Dirac 4-spinors. The procedures of the last section are not
applicable to such problems as they stand because the Dirac atomic Hamilto-
nian has no global lower bound. Following [39, 40, 41] we shall show that the
nonrelativistic theory can be adapted for relativistic problems so that similar
computational strategies can be used. We begin with the Galerkin equations
for the one-electron problem, after which the way is open for applications to
the structure of atoms, molecules and solids .

5.6.1 The finite matrix method for the Dirac equation

The finite matrix method approximates Dirac spinors in a problem with many
atomic nuclear centres by writing down a trial solution
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N
Y=t Gra M+, p1,x]

TSN e M1, %]

p=1"pa

Ya(x) : (5.6.1)

where a labels each atomic or molecular spinor and § = +1 labels the upper
and lower components respectively. It is often sufficient just to use the sign
of 3 as a label, and we shall do so whenever this causes no ambiguity.! The
expansion coeflicients c/ﬁw are in general complex numbers. The form of the
2-component functions M [3, i, x] will be discussed in more detail later. The
multi-index p completely specifies each basis spinor; in general it will have
the form
w={A kK, j,m,...}

where A labels the atomic centre taken as the origin for x and the dots
signify other parameters which may be required. When we wish to focus on
one parameter belonging to a particular multi-index, we shall write A, or j,,
etc. For the time being, we shall consider just a single atomic centre, so that
the label A is redundant. We write the Dirac Hamiltonian for an electron in
the field of a static potential energy function U(z), € R3, in the usual form

hp =co-p+ Bme + Uz). (5.6.2)

The Rayleigh-Ritz method based on the trial function of (5.6.1) generates
a 2N-dimensional set of approximate eigenvalues and eigensolutions of the
Dirac equation. When partitioned into 2 x 2 blocks in comformity with the
spinor structure of (5.6.1), the Dirac Hamiltonian (5.6.2) becomes

2
~ . 9 me* 4+ U(x) co-p
hp =ca-p+ Bmc® +U(x) = (ca‘ p Cme 4 U(T) ) (5.6.3)

where a 2 X 2 identity matrix multiplying the scalar entries on the diagonal
has been left implicit. The expectation of this operator with respect to the
trial function (5.6.1) is a Hermitian form in the expansion coefficients

c= (zj) : (5.6.4)

where the ¢®, 3 = +1 are N-rowed column vectors. The Rayleigh quotient
corresponding to (5.5.1) can then be written

R(c) =c/Hc/c'Sc (5.6.5)

where H and S are 2N x 2N Hermitean matrices which we partition into
N x N blocks so that

! The labels T = L for 8 = +1 and and T = S for 8 = —1 were used in the original
papers.
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H— mc?Stt + Utt eIl
T eIt —-me2S—— 4+ U |’
(5.6.6)
Sttt 0
s=[57 .
The Galerkin equations that result from (5.6.5) can then be written

(me? — E)STT + UtH It [et] _
I+ —~(m+E)ST+U | |c | 0, (567

where FE is one of the eigenvalues of this 2/N-dimensional algebraic system.

The original mathematical problem has now been approximated by an al-
gebraic system which, we hope, exhibits many of the properties of the original.
We discussed the convergence of Rayleigh-Ritz calculations in nonrelativistic
quantum mechanics in the last section, and it is clear that the choice of 2-
component basis spinor families M |3, u, x], which generate the matrix blocks
of (5.6.7), needs some care. One consideration will be the ease with which we
can generate the various matrices, especially when they involve basis spinors
centred on different atomic nuclei. In the present case, the Gram (or overlap)
matrices S77" have elements

Sp = G [ MG, M (5.68)
and similarly the atomic mean field potential matrices UPP" have elements
U = b4 / MIB, ji,x]1 U(r) M3, v, ] dx. (5.6.9)
The kinetic matrices IT?? = (HB/B)T have elements
mniy = 55,,_5/M[ﬁ,u,xra.p M[-3,v,x] dx, (5.6.10)

However there is more at stake than computational convenience, and we shall
see that it is essential to incorporate specific relations between the basis spinor
components to make the method successful.

5.6.2 Convergence of Rayleigh-Ritz methods for Dirac
Hamiltonians

The existence of a lower bound for nonrelativistic Hamiltonians of atomic
and molecular physics plays a crucial role in Section 5.5. In particular, the
eigenvalues Ti(N),i =1,2,..., N of the Galerkin equations (5.5.2) derived from
a self-adjoint, non-negative compact operator T' are, according to Theorem 5.7,
upper bounds to the corresponding exact eigenvalues, t;, of T itself:
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0<ty <M< <ty <. (5.6.11)
However, this is not quite the end of the story, and Stakgold [42] points out
a number of corollaries, in particular

1. If T is non-positive then -T is non-negative and (5.6.11) holds with the
inequalities reversed.

2. If T is indefinite then (5.6.11) holds for the positive eigenvalues and also,
with the inequalities reversed, for the negative ones.

When these results are combined with the next theorem, we have sufficient to
extend the Raleigh-Ritz method to Dirac operators:

Theorem 5.17. Let ﬁD be the Dirac operator of (5.6.2) with potential func-
tion U(x) < 0, and suppose that 0 > (| U|¢)/ (¢ ]9¥) > Umin > —2mc?
for all trial functions v in the dense domain, D(ED), in the Hilbert space H.
Assume, as is usually the case, that the spectrum of ED consists of a point
spectrum By < Ey < ... in the interval (—mc?, +mc?) with a point of ac-
cumulation at +mc?, and a continuous spectrum with one branch E > mc?
and the other in E < —mc?. Then there exists a lower bound E to the point
spectrum with —mc? < E < Ey, and an upper bound E < —mc? to the lower
branch of the continuous spectrum.

Proof: Consider the family of operators

~

hp(v) =ca-p+pmc: +vU(z), 0<v<1

so that ED(()) is the free-particle Dirac Hamiltonian, and ED(l) = hp The
Rayleigh quotient

(Y| hp(v) |¥)
(v]¥)

represents an estimate of the eigenvalue corresponding to the trial function
). When v = 0, we know that the spectrum has two disjoint branches, one
with E > +mc?, the other E < —mc?. Suppose we choose 1 such that
Ry (0) > +mc?; because Upin < (¢|U(x)|¢)/(¢]1) < 0 by hypothesis,

we have Ry (v) > me? + Upin > —mc? so that, in particular, there exists an

E > —mc? so that each trial eigenvalue Ry (1) > E. Because D(ED) is dense
in H, we conclude that every point eigenvalue satisfies E; > E. Similarly, if
we choose trial functions such that R, (0) < —mc?, we conclude that there

exists E such that Ry(1) < E < —mc?. [ |

Ry(v) = = Ry(0) +v (¢ |U() [¢) /(D] ¢).

Extension of the Rayleigh-Ritz method to the Dirac equation depends
upon several conclusions that we can draw from these results:

1. For Dirac Hamiltonians appearing in atomic and molecular structure, the
lower (negative energy) spectrum has an upper bound E. The Galerkin
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equations (5.6.7) have 2N eigenvalues which we may label Ei(N)7 =

1,2,...,2N in increasing order. Then
ENM <M < <EM <FE < -me?

provide N square integrable wavepacket approximations to scattering so-
lutions in the lower Dirac continuum.
2. Similarly E furnishes a lower bound to the bound state eigenvalues and
the upper (positive energy) continuum.
—m® < E< E < EW), <BEy<EV), <...<EX.

The eigenvalues indexed N+1, N+2,. .. are upper bounds, hopefully good
approximations, to the lowest bound state eigenvalues of hp. As in similar
nonrelativistic Rayleigh-Ritz calculations, some of the higher eigenvalues
will be below the accumulation point +mc? and represent Rydberg states.
Those above +mc? will represent square integrable wavepacket approxi-
mations to scattering states in the upper Dirac continuum.

3. The estimate U,,;, > —2mc?, which ensures that eigenvalues of the up-
per set do not fall below —mc?, provides a very slack lower bound E.
From the nonrelativistic virial theorem, for which the expectation value
(U) = =2(T), where T is the kinetic energy operator, we expect that the
minimum bound eigenvalue E](V]\Ql is of order Uy, /2. This is confirmed
by numerical calculations [41].

4. Stakgold [42] comments that increasing the dimension, N, of the basis
set generally improves the approximation. For this we need a basis set
that can be completed in a suitable sense as N — oo. The notions of
nonrelativistic E-convergence and A-convergence must be adapted to the
relativistic problem so that EJ(VA_@ — F;, i =1,2,... for bound states in
the point spectrum.

5. The Rayleigh-Ritz eigenvalues in the continuum do not converge as N
increases. However for each fixed IV the eigenvalues and eigenfunctions can
be used in sum-over-states perturbation formulas such as (4.8.2) replacing
the numerical integration over the energy parameter. The sum-over-states
must then converge as N — co. Spinor basis sets in relativistic calculations
must have completeness properties that guarantee this convergence.

The domain of the operator K = ED(O), D(I%), can be written
D(K) = D (K) UD_(K) (5.6.12)
where

D (K) = {¢|(|K|v) >me}, D_(K)={¢|(|K|v) < -mc*}

~ ~ ~

Clearly D4 (K) N D_(K) = 0; no Cauchy sequence in D4 (K) can have a limit
in D_(K) and vice versa.
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For bound state calculations, we are interested in using the Rayleigh-Ritz
method to approximate the point spectrum, which we have seen are connected

~

to states ¢ in D (K). This enables us to define a D-norm on D (K) by

~

19I5 = (w|K|¥), ¢ € Di(K)

so that we only need to choose a basis which is complete with respect to the
D-norm in D4 (K) to be sure that the Rayleigh-Ritz method will generate
reliable estimates of point spectra.

Fortunately, most of the operators that occur in relativistic calculations
in atomic and molecular physics are form bounded with respect to K in the
sense of (5.5.5), namely

~

[V I < alp [ K1) +blvl?, v € Di(K),

so that we can define a form of A-convergence for such Dirac operators. The
list includes

1. Bounded operators: Dirac o and (3 matrices; operators such as a X « and

a - A, where A is the vector potential of some external field.

Powers r* with A > —1 (including the Coulomb operator).

3. Components of the (3-)momentum operator p, the position x and combi-
nations such as o - p.

4. Other pieces of hp.

N

5.7 Spinor basis sets

It is important to take the functional relations between the four components
of a Dirac spinor into account when designing approximation schemes. The
main factors influencing the design are:

1. The nuclear Coulomb field dominates the dynamics near each centre. It is
therefore desirable that spinor basis functions behave asymptotically like
central field spinors (3.2.4) near r = 0:

bonte) = (@ ) =1 (e Goy)- e

2. Basis spinors of the form (5.7.1) should, as far as practicable, be con-
structed so that the approximate Dirac spinors satisfy the boundary con-
ditions, §5.3, as r — 0 and r — co.

3. We should the equations to exhibit nonrelativistic behaviour in the math-
ematical limit ¢ — co. When the dynamics is dominated by the nuclear
Coulomb field, (3.2.2, basis spinors should satisfy approximately an equa-
tion of the form
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(0 o) (@) -0 612

where € = E —mc? is the energy relative to the usual nonrelativistic zero.
For ¢ sufficiently large, 2mc? > ¢ — U(r), this reduces to

U(T) —€ co-p @:m(m) ~0

co-p —2mc?) \i®,(x))
and the lower equation gives the Pauli approximation, (3.2.14) and
(A.4.12),

e 1 n
P, (x) = L ol (). (5.7.3)

Substituting this into the upper equation

(U(r) — )@t (x)+co-pid,, (x) =0, (5.7.4)
gives .
{gmte P2+ W) -9} ot @ =0 (5.75)

so that, with the aid of the formal operator identity,

(0 -p)° =p”, (5.7.6)

we see that @} (x) satisfies Schrodinger’s equation in the limit. This
suggests that the radial amplitudes, (5.7.1), should satisfy

_ 1 d K\ .,
fa(r)— T (dr + r) fio(r). (5.7.7)
as ¢ — oo. We shall say that basis spinors satisfying (5.7.3) and (5.7.7)
apart from a normalization constant are kinetically matched.
4. Acceptable basis spinors must be complete in a suitable Hilbert space.
In particular, matrix elements of components of the Dirac Hamiltonian,
U(r), a- p and § must be finite.

Let us now apply similar reasoning to the matrix Dirac equation (5.6.7).
The matrix analogue of (5.7.3) is

-_1 -\ttt
=5 (S77) O "¢
and that of (5.7.5) is
1 -
{2mﬂ+ () "It 4+ (Ut - es++)} ct =0 (5.7.8)

For this to be the matrix Schrédinger equation in the space spanned by the
2-component basis spinors @, (x), we need to ensure that
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EE N s T U R
T = 2mII (S ) 7, (5.7.9)
where T** is the matrix of the nonrelativistic kinetic energy, p*/2m.

This is by no means straightforward. Elementary quantum mechanical
texts often make the point that it is not possible to reproduce the canoni-
cal commutation relations [z,p] = i in a finite matrix representation. The
presence of (S**)_l, the inverse of the small component Gram matrix, indi-
cates that we have an approximate resolution of the identity; in general, the
Dirac matrix representation of T has too small an expectation value unless
the 3 = —1 basis set is complete [39, 43, 44, 45]. The error due to incom-
pleteness of the basis set lowers estimates of Dirac eigenvalues and predicts
binding energies which are larger than they should be.

Fortunately, there is a simple way out: kinetic matching of the basis
spinors [40]. In the notation of (5.6.1), we introduce 2-spinor basis elements

M8, p, x| satisfying
M[—l,u,x] xo pM[—'_]-nU',X]

(compare (5.6.8), (5.7.3)). Introduce normalization factors NE such that

MIB, p,x] = Njjm[B, u, ]. (5.7.10)
Then
_ NB 8 _
Sﬁﬁ N, Nyﬁ 35, ﬁu /mﬂ W, X 'm[B, v, x]dx (5.7.11)

The normalization constants may be chosen for convenience, for example to
make the diagonal elements of the Gram matrix unity:

2
St = () -

for all values of p. From (5.6.10), this means that

pv o

—+ _ gt ——
1, =17, —/M[—l,,u,x]Ta'-pM[—l—l,V,x} dx =S5 (5.7.12)
from (5.7.10) and
mt (Sff) m =8 (5.7.13)

which makes the calculation of the kinetic matrices a trivial matter.
To verify equivalence of ST~ /2m, (5.7.13), with T™F, (5.7.9), we first
integrate over angles to reduce the problem to a radial integration. We write

m[B, p, x| =

an(ev 90) (5'7’14)

The radial kinetic energy T;. is diagonal with respect to the angular quantum
number k and its 8 = +1 matrix block has elements
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1 > > 1(l+1)
++ _ - ntwnt +x _ +
t;u/ - 2m N,u Nu ‘/0 gp, (7") < d’l"2 + 7’2 9v (T)d?"

The differential operator can be factorized and an integration by parts gives

omitf} = /OOO [Nj (; + :“) g:[(r)] * {Nj (Ci + :") gj(r)] dr

o0
~ NN / g5 (g5 (r) dr
=N, Ny s, =S,

as required. We could also apply a similar argument to negative energy states
to give a nonrelativistic Schrédinger equation for low-lying positron states.
This involves setting e = E-+mc?, interchanging the roles of the 3 components,
replacing k by & = —k and [ by [ = [ + 1, depending on the sign of &.

Kinetic matching is therefore central to basis set design for approximation
of Dirac wavefunctions and to the explanation of the pathological “disorders”
described in §4.13 and §5.5. The kinetic matching connection, (5.7.7), gen-
erates functions that do not belong to the 8 = +1 basis set; the disorders
described in the literature stemmed from choosing a § = —1 basis set con-
sisting of the 0 = +1 functions together with additional functions intended
to “balance” the set kinetically [46]. This makes it impossible to satisfy the
one-to-one kinetic matching relation (5.7.7). Moreover, the increase in the
dimension of the § = —1 basis accentuates linear dependence problems, it-
self undesirable, and the algebraic equivalence of IT™~ (S~=) "' IT~* /2m and
T+ is also lost. The unmatched small component basis functions lead to spu-
rious states having no physical meaning. Kinetic matching, as defined here,
eliminates the problem.

5.8 L-spinors

L-spinors were first mentioned in [47], although they were introduced with
a different name in an earlier paper [49, eq. (71)] (see also [50, p. 240] and
[51, §22.6.3] and [41]). The name differentiates them from the similar “rela-
tivistic Coulomb Sturmian functions” introduced by Szmytkowski [52] whose
definition does not satisfy the full kinetic matching criteria.

Nonrelativistic Coulomb Sturmian functions [53, 54] constitute a countable
basis of analytic functions which can be shown to be complete on suitable func-
tion spaces for the representation of both bound and scattering nonrelativistic
radial wavefunctions. There have been many applications. The definition of
L-spinors, whi